
 5-1

C h a p t e r 5

Input and String
Handling Functions

In this chapter, you will learn how to use the following AutoLISP
functions to World Class standards:

1. Placing Text on Drawings as Easy as Lines and Circles
2. Starting the Notemaker Code by Launching the Visual LISP

Editor
3. Saving the Object Snap Settings and Then Turning Them Off
4. Using Getpoint to Obtain a Point on the Graphical Display
5. Using Getreal to Obtain a Real Number from the Keyboard
6. Using Getstring to Obtain Text from the Keyboard
7. Using Getint to Obtain an Integer from the Keyboard
8. Using Initget to Setup Keywords for the Getkword Function
9. Using Getkword to Obtain Text from the Keyboard
10. Using the If Function to Make Decisions in a Program
11. Using Strcat to Concatenate Two or More Text Strings
12. Using Strcase to Change the Case Size of a Text String
13. Using Command �Text� to Insert Notes
14. Ending the Program
15. Saving the Program
16. Loading the Program

 5-2

`Placing Text on Drawings as Easy as Lines and Circles

On many drawings, we can see standard text which describes the part�s material, surface finish,
and protection coating from corrosion, coating color and texture and the tolerance range. Many
organizations placed their notes in a common area and use standard phrasing which makes the
manufacturing process easier for the technician or construction worker since they can locate the
information and they are used to the terminology. The Visual AutoLISP programming method
will work well determining and creating text for any working drawing. As with previous
coding, we will ask the user a few questions and based upon their answers, we will formulate a
series of numbered notes. Again using a program will present the designer with inquiries that
need to be answered, so when we write the code during slower times of the engineering
production year, we can use that potentially saved time stored in our extremely fast code to
make drawings faster at our company in the peak segment of their work calendar.

In this exercise, we will create a program called Notemaker. The program will create standard
text similar to the notes we have seen in previous textbooks, World Class CAD, Fundamentals
of 2D Drawing and Fundamentals of 3D Drawing. The note we will place on the drawing or as
follows:

Notes:
1. Materials: aluminum
2. Remove all sharp edges and burrs.
3. Paint with one coat of primer and with 1 coat(s) of flat white enamel.
4. Tolerances unless otherwise specified:

Fraction: ±1/16
1 decimal: ±0.06
2 decimal: ±0.03
3 decimal: ±0.010
Angular: ±0.5º

Figure 5.1 � Standard Notes on a Part Drawing

The questions we will ask concentrate on the name of the material from which the part will be
made. The company does not ask a question for the second note, since all parts will have sharp
edges or imperfections removed. Another is the number of coats of enamel, the color of the
enamel and the texture of the enamel. After those questions, we will prompt the designer
whether they wish to use the standard tolerances or input their own. We are showing the
standard tolerances in Figure 5.1. If we do not want the standard tolerances, we will have a
prompt for fraction, 1 decimal, 2 decimal, 3 decimal and angular tolerances. An option like this
shows the adaptability in the code, especially when we use a little imagination. The if function
will enable us to toggle between the standard and custom notes for tolerances.

At the beginning of the notemaker.LSP program, a modified form of the Construction code, we
will place our regular series of comments, which are the program name, explanation and
copyright information. Next will be the alert message which gives pertinent information from
the code lighter and the keyboard characters to execute the program.

 5-3

As with the first eight Construction code exercises, we need to capture the Objects Snap settings
from the user�s drawing, store the settings and in a variable called OSM and then turn the
Object Snap settings off. This will keep any Object Snap such as Endpoint, Center or Midpoint
from interfering with the placement of the notes when the programming is running
automatically. The Notemaker program will follow all the steps of the Construction code
process except Step 4, Do the Math. We will not have to compute any complex geometry to
insert the notes, so we will skip this section.

Step 1 Start the program
Step 2 Drawing setup
Step 3 User input
Step 4 Do the math
Step 5 Point assignments
Step 6 Lets draw
Step 7 End the program

Almost every drawing made will have text in the form of notes, in the title block, bill of
materials and revision block. This first program which handles text strings only requires the
user to select a single point and then every other line of text is referenced from the first point. In
future routines that place text in a drawing, the placement of each word or phrase will be even
more precise, such aligning the wording in between lines of the title block. So this code is just
as important to a designer as drawing lines and dimensions. Now let us start to build the
program, notemaker.LSP.

Starting the Notemaker Code by Launching the Visual LISP Editor

Open the Visual LISP Editor
and on the first line type the
comment

;;; notemaker.lsp

The program name is always
on the first line of the code.
The semicolons cause the
statement to become a
comment so the line of code
will not be read.

 Figure 5.2 � Starting the Notemaker Program

The next comments in the program will be the details concerning what the routine will do. In
this program, there are comments after almost every line of code.

 5-4

Next we will create an
AutoCAD Message by
taking the information listed
in the comments and placing
the text in the alert function.
On the first line of the alert
expression, the program and
the copyright information is
keyed.

 Figure 5.3 � Adding the Alert Expression

Add a new comment

;;; start the program

Then we start the program
with the defun function,
which means define function.
Begin with the open
parenthesis then defun, then
a c: which will allow the
program to run on the
AutoCAD command line.

 Figure 5.4 � The Defun Expression

Practice typing the following examples of the alert function at the command line of AutoCAD.

Function Name Description

alert AutoCAD Message

The alert function will
create an AutoCAD message
window appear on the
graphical display with an
OK button to close the
message window.

Examples
At the beginning of the
program

(alert "notemaker.lsp -
copyright 1999 by charles w.
robbins. type nm to start")

Window appears on the
graphical display

As an error prompt (alert "Error: Type units in
inches�)

Window appears on the
graphical display

Next type nm which will be the execution symbol to start the program. Keep in mind the alert
message that stated �type nm to start�. The alert message text and the defun symbol must
match. The open and closed parenthesis �()�following the nm enclosing nothing means there
will not be any defined arguments or local variables for this program. After that, we need to
make changes to the AutoCAD System Variables that may interfere with the running of the
code and automatically drawing the lines and arcs perfectly.

 5-5

Practice typing the following examples of the defun function at the command line of
AutoCAD.

Function Name Description

defun Define Function
The define function leads off
the beginning of the
program

Examples
Place a c: in front of the
program, hello. Allows hello
to be typed at the keyboard to
execute the code

(defun c:hello (/) (print �Hi
Ya All�))

Answer: C:HELLO
Type: hello
Returns: �Hi Ya All�

When the code is used inside
another program, do not place
the c: in front of the program
name

(defun hello (/) (print �Hi
Ya All�))

Answer: HELLO
Type: (hello)
Returns: �Hi Ya All�

Saving the Object Snap Settings and then Turning Them Off

In the next section of the code, we will turn off the drawing Object Snaps so they cannot
possibly interfere with the insertion of the drawing notes. In order to accomplish this task, we
you need to understand the getvar and the setvar functions. The getvar function will obtain a
drawing setting, so we can save the number or text string for future use. The setvar function
will allow us to change a system variable, like turning off the Object Snaps.
Start with a new comment

;;; drawing setup

And type the code

(setq osm (getvar �osmode�))

; gets osnap settings and
assigns to osm

 Figure 5.5 � Saving and Turning Off Object Snaps

Next, we will turn off the drawing�s object snaps by setting the system variable �osmode� to 0
using this line of code. Add the comment as shown.

(setvar �osmode� 0) ; turns osnap settings off

Let�s talk about the expression, (setq osm (getvar �osmode�)). The function setq means set
quotient and we will use the function to create a variable osm which stands for object snap
mode, a variable name that we just made up. The variable osm will hold the integer

 5-6

representing the �osmode� system variable�s setting. To get the number use the function getvar
followed by the name of system variable inside a set of quotes.

To turn off a system variable in many cases in setting the variable to zero. In the expression,
(setvar �osmode� 0), the function setvar followed by a system variable inside a set of quotes
like �osmode� then a 0 will result in turning off the Object Snap settings.

Practice typing the following examples of the setq, getvar and setvar functions at the
command line of AutoCAD.

Function Name Description

setq Set Quotient
Allows the user to assign a
real number, integer, string
or list to a variable

Examples
Set the variable a the text
string World Class CAD

(setq a �World Class CAD�)

Answer: �World Class
CAD�

Set the variable counter the
integer 0

(setq counter 0)

Answer: 0

Set the text height variable
txtht the real number 0.125

(setq txtht 0.125)

Answer: 0.1250

Set the point variable sp the
list of 0,0,0

(setq sp (list 0.0 0.0 0.0))

Answer: (0,0,0)

Function Name Description

getvar Get a variable
Allows the user to obtain a
system variable setting from
an AutoCAD drawing

Examples
Turn on the endpoint,
midpoint, quadrant,
intersection and
perpendicular Object
Snaps

(setq osm (getvar �osmode�)) Answer: 179

Get the AutoCAD
version number

(setq osm (getvar �acadver�)) Answer: "16.2s (LMS
Tech)"

Function Name Description

setvar Get a variable
Allows the user to obtain a
system variable setting from
an AutoCAD drawing

Examples
Turn off the Object
Snaps

(setvar �osmode� 0)) Answer: 0

 5-7

Using Getpoint to Obtain a Point on the Graphical Display

In the User Input section of the Construction Code, we need to expand into new areas besides
just requesting the starting point and the getting a measurement using the getreal function as we
did in the first eight programs.

The first function we will
examine together is getpoint.
This tool will allow the
program user to select a
point on the graphical
display with their mouse.
Following getpoint is a text
string usually written is a
commanding or questioning
format.

 Figure 5.6 � Using the Getpoint Function

The user input of selecting a point begins with a comment.

;;; user input

Then type the following code:

(setq sp (getpoint �\nPick the starting point �))

We use the setq expression to assign the three point list (X, Y and Z) to the variable sp
representing the starting point. After the function getpoint, a programmer has the option, in
which we have chosen, to add a line of text prompting the user to �Pick the starting point�
and we also modified the prompt in a small way. Notice that in front of the capital P in the
word Pick, a �\n� is added. That will place the command �Pick the starting point� without
containing those two characters to start on a new command line in the AutoCAD program.
Placing command statements or questions on a new command line allows for a cleaner look to
the user when following a command or answering the question.

Periodically we will work at an organization that wants their notes in the exact location of their
drawing. When we face a programming problem such as this the starting point expression will
change. First instance, let us make believe that the notes at this company start at the X and Y
coordinates 14, 10. Then in this note making code, we would change the starting point
expression to:

(setq sp (list 14 10 0))

This will place the beginning of the notes in an exact position for every occasion.

Practice typing the following examples of the setq and getpoint functions at the command line
of AutoCAD.

 5-8

Function Name Description

setq Set Quotient
Allows the user to assign a
real number, integer, string
or list to a variable

Examples
Set the variable a the text
string World Class CAD

(setq a �World Class CAD�)

Answer: �World Class
CAD�

Set the variable counter the
integer 0

(setq counter 0)

Answer: 0

Set the text height variable
txtht the real number 0.125

(setq txtht 0.125)

Answer: 0.1250

Set the point variable sp the
list of 0,0,0

(setq sp (list 0.0 0.0 0.0))

Answer: (0,0,0)

Function Name Description

getpoint Get a Point

Allows the user to obtain a
point on the graphical
display by selecting with a
mouse

Examples
Get a starting point (setq sp (getpoint "\nPick

starting point"))
Answer:
Pick starting point
Then select a point and the
will return a list like:
(30.471 28.4052 0.0)

Using Getreal to Obtain a Real Number from the Keyboard

To ask the question, �What is
the text height�, we will use
the getreal function. We use
getreal to allow the LISP
program user to type a
number containing decimals
with their keyboard. The
getreal expression is set
within the (setq txtht ��.)
code.

 Figure 5.7 � Using the Getreal Function

So type the following compound expression:

(setq txtht (getreal �\nWhat is the text height �))

 5-9

The information that the user types with the keyboard is stored in the variable name txtht. We
will never pick a variable name that matches an AutoCAD command.

Whenever we are not quite sure whether the answer is going to be a whole number or a decimal,
we will use the getreal function. Using another function which will only allow whole numbers
will never allow the acceptance of a decimal.

If you look at the Visual LISP Editor in Figure 5.7, you will notice that we dressed the last two
expressions so that the questions line up perfectly. You will pick up on this characteristic when
the program is running and the typed answers to the questions line up neatly.

Practice typing the following examples of the getreal function at the command line of
AutoCAD.

Function Name Description

getreal Get a Real Number
Allows the user to obtain a
real number by allowing the
user to type at the keyboard

Examples
Get a number (setq txtht (getreal "\nWhat

is the text height?�))

Answer:
What is the text height?
Then type: 0.125
3.2

Ask for a number, user types a
whole number and the reply is
changed to a real number

(setq txtht (getreal "\nWhat
is the text height?�))

Answer:
What is the text height?
Then type: 1
1.0

Ask for a number, user types a
fraction and the reply is
changed to a real number

(setq txtht (getreal "\nWhat
is the text height?�))

Answer:
What is the text height?
Then type: 1/8
0.125

Using Getstring to Obtain a Text from the Keyboard

When we want the user to
type a text string like the
type of material at the
command line, we use the
getstring function. This tool
allows the program user to
type any characters with their
keyboard, and in our note
making program scenario,
we need words or short
phrases to complete the text.

 Figure 5.8 � Using the Getstring Function

 5-10

So type the following compound expression:

(setq matl (getstring T �\nWhat is the material? �))

The information that the user types with the keyboard is stored in the variable name matl.
Again the user input commands and questions are aligned in the LISP routine to allow the
commands and questions to line up neatly on the command line in AutoCAD when the program
is running. Aligning the expressions as shown in Figure 5.8 also gives us, the programmers the
ability to easily check for a missing parenthesis.

We might wonder why there is a capital T following getstring. As we already know that when
we are in the AutoCAD program, the space bar acts as an Enter key on the keyboard. So if we
do not place the capital T behind getstring then if the material is cast iron, the user will type
cast and strike the space bar, and the program will continue to the next command or question in
the user input. Placing the capital T behind getstring allows the space bar to operate as a space
bar, adding spaces in the text string wherever the user wants them.

Sometimes companies use the same materials because they specialize in making that single
product. If our organization uses just one or two standard materials, then we would want to
change the material getstring expression to a getkword coded phrase. We would identify the
few materials using keywords and the getkword function will only accept those words during
the user input section of the Construction code. We will learn about the getkword function later
in this chapter.

Practice typing the following examples of the getstring function at the command line of
AutoCAD.

Function Name Description

getstring Get a Text String
Allows the user to obtain a text
string by allowing the user to type
at the keyboard

Examples
Looking for a
single word
response

(setq matl (getstring "\nWhat is
the material?�))

Answer:
What is the material?
Then type: Aluminum
�Aluminum�

What happens
when two or more
words are typed

(setq matl (getstring "\nWhat is
the material?�))

Answer:
What is the material?
Then type: Stainless Steel
�Stainless�

Fix the space bar
problem with a T
after getstring

(setq matl (getstring T "\nWhat is
the material?�))

Answer:
What is the material?
Then type: Stainless Steel
�Stainless Steel�

 5-11

Using Getint to Obtain an Integer from the Keyboard

We use getint to allow the
LISP program user to type a
whole with their keyboard.
The getreal expression is set
within the (setq coats ��.)
code. If the user does not
type a whole number, the
AutoCAD program returns
with �Requires an integer
value� and will repeat the
original question.

 Figure 5.9 � Using a Getint Function

So type the following compound expression:

(setq coats (getint �\nHow many coats of enamel? �))

Practice typing the following examples of the getint function at the command line of
AutoCAD.

Function Name Description

getint Get an Integer
Allows the user to obtain an
integer by allowing the user
to type at the keyboard

Examples
Asking a question (setq coats (getint "\nHow

many coats of enamel? �))

Answer:
How many coats of enamel?
Then type: 1
Returns: 1

Asking a question and
inputting a real number

(setq coats (getint "\nHow
many coats of enamel? �))

Answer:
How many coats of enamel?
Then type: 1.0
Returns:
Requires an integer value
and
How many coats of enamel?

Asking a question and
inputting an incorrect answer

(setq coats (getint "\nHow
many coats of enamel? �))

Answer:
How many coats of enamel?
Then type: One
Returns:
Requires an integer value.
and
How many coats of enamel?

 5-12

From time to time, we will
use a get function more than
once in a program. In the
note making routine, we
need to enquire what is the
enamel�s color and texture,
so we will use the getstring
function two more times and
assign their responses to a
variable using the setq
function.

 Figure 5.10 � More Getstring Functions

So type the following compound expressions:

(setq c_color (getstring T "\nWhat is color of the enamel? �))
(setq c_texture (getstring T "\nWhat is the enamel texture? �))

We can use the underscore _ in variable names where we might want to place a space.

The very next expression in the program is most likely uses the getkword function which will
use the keyword definition in the initget function. Whenever we want to change the keywords,
use the initget function to redefine them before another get a keyword expression.

Using Initget to Setup Keywords for the Getkword Function

Whenever we want to use the
getkword function which
uses keywords for the reply
to the program�s command
prompt, we need to use the
initget function. We will use
the function to determine
what types of tolerances are
placed in the series of notes
on the drawing when the
program is run.

 Figure 5.11 � Adding an Initget Expression

So type the following compound expression:

(initget 1 �y n�)

The number behind the initget function determines the type of entry that will be accepted. Most
of the time, we will use a 1, meaning that the user cannot type a null entry. There are other bit
codes used less often, shown in the table below.

 5-13

Bit Meaning
1 Prohibits a NULL input
2 Prohibits input of zero (0)
4 Prohibits negative values.
8 Allows the user to enter a point

outside the drawing limits
16 Not used
32 Shows dashed lines when

displaying rubber-band lines or
boxes

64 Ignores Z coordinate
128 Allows unpredictable input

After the placing the input option control bit, the keywords are placed inside quotes. In our
problem, we want either a y for yes or n for no, so the section of the code is written �y n�. We
could have written �yes y no n�) and each of these possible keyboard entry can be accepted.

Practice typing the following examples of the initget function at the command line of
AutoCAD.

Function Name Description

initget Input Options for
User Input Functions

Define the keywords for the
getkword function

Example
Allow the user to type yes (y)
or no (n) at the keyboard

(initget 1 �y n�) Returns: nil

Allow the user to type 1, 2 or
3 at the keyboard

(initget 1 �1 2 3�) Returns: nil

Using Getkword to Obtain Text from the Keyboard

When we want the user to
type a text string that
matches a certain list we
present in the question, we
use the getkword function.
The user can type any entry
at the keyboard, but the only
one matching one of the
keywords will be accepted.
The getkword expression is
set within the (setq q1��.)
code.

 Figure 5.12 � Using the Getkword Function

 5-14

So type the following compound expression:

(setq q1 (getkword �\nDo you want standard tolerances? [y n] �))

The information that the user types with the keyboard is stored in the variable name q1. Again
the user input commands and questions are aligned in the LISP routine to allow the commands
and questions to line up neatly on the command line in AutoCAD when the program is running.
Aligning the expressions as shown in Figure 5.12 also gives us, the programmers the ability to
easily check for syntax errors.

At the end of the question, place the possible answers to the question in brackets, so the user
does not have to guess what the proper response is. In our case only y or n will work.

Practice typing the following examples of the getkword function at the command line of
AutoCAD.

Function Name Description

getkword Get a Key Word

Allows the user to obtain a
keyword text string by
allowing the user to type at
the keyboard

Examples
Responding the proper
keyword

(setq q1 (getkword �\nDo
you want tolerances? [y n]
�))

Answer:
Do you want tolerances?
Then type: y
�y�

Not responding the proper
keyword

(setq q1 (getkword �\nDo
you want tolerances? [y n]
�))

Answer:
Do you want tolerances?
Then type: no
Invalid option keyword and
Repeats the initial question

Using the If Function to Make Decisions in a Program

Whenever we are confronted
with a making a choice
between two or more options
in computer programming,
the if function is a very
popular solution to this
challenge. The if function
will execute the statements
within the then section of the
if expression when the
logical test is true.

 Figure 5.13 � Using the If Function with a Yes Answer

 5-15

The if function also will execute the else section of the if expression when the logical test is
false.

The if function is arranged to work in a more complex fashion than other AutoLISP tools. If is
typed directly after the open parenthesis. Then an expression containing the logical test is
written right after the if. The logical expression tests for a true or false response. When a
program user answers the question �Do you want tolerances? [y n]�, then the y or n is stored in
the variable q1. So in the logical test we are asking does the text string �y� equal �y�. Of course
the answer is true and the if function will execute the expression in the next set of open and
closed parentheses.

So type the following compound expression for the notemaker routine:

(if (= q1 �y�) (setq frac �1/16�
1dec �0.06�
2dec �0.03�
3dec �0.010�
ang �0.5�

)
)

The setq function can be written as shown in Figure 5.13 where there is a series of variables
with a definition following each holder of changeable data. Therefore if the logical test of (= q1
�y�) is true, then frac will contain �1/16�, 1dec will contain �0.06�, 2dec will contain �0.03�,
3dec will contain �0.010� and ang will contain �0.5�. This if expression does not contain an or
else phrase for a logical test result of false.

Instead of using an or else
expression in the first if
statement, we are going to
copy and paste the first if
statement and paste the lines
of code below the closed
parenthesis of the first
statement. After in the new
lines of code as shown in
Figure 5.14, then change the
text strings to getstring with
questions, so the program
user can assign their own
tolerances for each question.

 Figure 5.14 � Using the If Function with a No Answer

The setq function can be written as shown in Figure 5.14 where there is a series of variables
with a question following each holder of changeable data. Therefore if the logical test of (= q1
�n�) is true, then frac will contain a text string from the answer to the question �Fraction?�
1dec will contain a text string from the answer to the question �1 dec?� 2dec will contain a text

 5-16

string from the answer to the question �2 dec?� 3dec will contain a text string from the answer
to the question �3 dec?� The variable ang will contain a text string from the answer to the
question �Angular?� Again this if expression does not contain an or else phrase for a logical
test result of false.

Make sure the second if expression looks like the one below:

(if (= q1 �n�) (setq frac �\nFraction? �
1dec �\n1 dec? �
2dec �\n2 dec? �
3dec �\n3 dec? �
ang �\nAngular? �

)
)

The optional �or else� expression in the if statement can be written avoiding a second if
statement in the program. The technique we used in the notemaker code does not utilize the �or
else� expression, keeping the code simple to use and reinforces the most typical method we will
see the if statement written, the �then� expression. In beginning programming, the KISS rule
�Keep It Super Simple� applies. Just because there are many options in every function does not
override the fact that a program needs to have a clean look for checking. Experienced
programmers have seen code writers use complex, messy looking and uncommented routines to
the degree that no one else in the organization can read their work. The profession of
programming has been through those years where the code writer was the holder of secret
looking text, that this type of engineering is non-productive to the entire group.

Practice typing the following examples of the if and = functions at the command line of
AutoCAD.

Function Name Description

if If Statement

The if function will execute
the functions within the then
section of the if expression
when the logical test is true
and within the else section of
the if expression when the
logical test is false

Example
If statement with just a then
section with a logical test
equally true

(setq q1 �y�)
(if (= q1 �y�) (alert �Hello�))

Answer: �Hello�

If statement with just a then
section with a logical test
equally false

(setq q1 �n�)
(if (= q1 �y�) (alert �Hello�))

Answer: nil

If statement with a then and
or else section with a logical
test equally false

(setq q1 �n�)
(if (= q1 �y�) (alert �Hello�)
(alert �Good-bye�))

Answer: �Good-bye�

 5-17

Function Name Description

= Equal To
Logical test determining
whether the first value is
equal to the second value

Examples
Using integers (= 8 8) Answer: T (true)
Using decimals (= 4.5 4.5) Answer: T (true)
Using text strings (setq q1 �y�)

(= q1 �y�)
Answer: T (true)

Using text strings (setq q1 �n�)
(= q1 �y�)

Answer: F (false)

Using Strcat to Concatenate Text Strings

The next section of the
Construction code is making
a point assignment. Instead
of assigning a X,Y,Z
coordinate, we will create a
relative movement string to
be placed in each command
line. In order to accomplish
this feat, we will learn two
new functions in AutoLISP,
strcat and rtos. Both
functions handle or make
text strings.

 Figure 5.15 � Creating a Relative Displacement String

So type the following compound expression:

(setq pt (strcat �@0,-�) (rtos (* 2 txtht))))

The variable pt will contain a text string made from two separate text strings. When the
computer user answers the question for text height, that real number is placed in the variable
txtht. The program works the inner most expression first and the asterisks * in (* 2 txtht)
means we will multiply the 2 times the txtht (See Chapter 4). The function rtos, meaning
convert the real number to a text string will change the real number representing the distance
between two notes into a string. The strcat function will concatenate the text �@0,-� and the
number in the form of a string. Concatenation or bringing together will create a text string like
�@0,-0.25� if the computer user typed 0.125 for the height of the text in the notes. Since the @
symbol is in front of the X and Y coordinates, each new note will move 0.25 down in the
negative Y-direction.

Now we are ready to write the code to insert the notes into the drawing.

 5-18

Practice typing the following examples of the rtos and strcat functions at the command line of
AutoCAD.

Function Name Description

rtos Real Number to a
String

Will convert a real number
to a text string

Example
Change a real number
represented by the variable
filename to a text string

(setq filename 1000))
(rtos filename)

Answer: �1000.0000�

Change a integer 1000 to a
text string �1000�

(rtos 1000) Changes 1000.0000 to
�1000.0000�

Function Name Description

strcat String Concatenation
Concatenates or brings
together two or more text
strings

Examples
Bringing three text string
together, one which is the
space

(strcat �Good� � � �morning�)

Answer: �Good morning�

Bringing five text string
together, two which is the
space

(strcat �How� � � �are� � �
�you?�)

Answer: �How are you?�

Using Command �Text� to Insert Notes

As in the first eight
programs, starting with the
Boxcircle and Anglemaker,
the command function is the
key to drawing lines, circles,
arcs, dimensions and placing
text into a drawing. In the
Notemaker program, we will
execute a command that we
may not have used in regular
AutoCAD, �text�.

 Figure 5.16 � Insert a Line of Text for �Notes:�

We have used the Mtext and Dtext tools on the Drawing toolbar in placing text on AutoCAD
drawings in other World Class CAD textbooks. The Text command is the original single line
text tool in the first years of computer aided designing using a Personal Computer (PC). The

 5-19

tool comes in handy when programming since the command does not call up dialogue boxes
and only contains simple attributes to the process of inserting notes.

So type the following expression:

(command "text" sp txtht "0" "Notes:")

The command function follows the open parenthesis, followed by the �text� tool. The next part
of the expression is the text insertion point which we are assigning to the coordinates stored in
the variable sp. Next, we see the text height which is being kept in txtht. All of our notes are
horizontal so the rotation angle is �0�. Lastly, the text string is "Notes:".

The next nine lines of code
use the same basic
command "text" expression
with a few small exceptions.
The insertion point changes
from sp to pt for the relative
movement. Standard notes
like note 2 and the beginning
of note 4 looks like the very
first command "text"
expression. The other seven
statements contain the strcat
function to concatenate
strings and the strcase to
change the text to lower case.

 Figure 5.17 � Insert Notes with Command �Text�

So type the following expression:

(command "text" sp txtht "0" "Notes:")
(command "text" pt "" "" (strcat "1. Materials: " (strcase matl T) "."))
(command "text" pt "" "" "2. Remove all sharp edges and burrs.")
(command "text" pt "" "" (strcat "3. Paint with one coat of primer and with " (itoa coats)
" coat(s) of " (strcase c_texture T) " " (strcase c_color T) " enamel.�)
(command "text" pt "" "" "4. Tolerances unless otherwise specified: ")
(command "text" pt "" "" (strcat " Fraction: %%p" (strcase frac T)))
(command "text" pt "" "" (strcat " 1 decimal: %%p" (strcase 1dec T)))
(command "text" pt "" "" (strcat " 2 decimal: %%p" (strcase 2dec T)))
(command "text" pt "" "" (strcat " 3 decimal: %%p" (strcase 3dec T)))
(command "text" pt "" "" (strcat " Angular: %%p" (strcase ang T) "%%d"))

In note number one, the strcase function can change the case of the text. When the expression
is written (strcase matl), the note will insert with all the text in capital letters. When the
expression is written (strcase matl T), the note will insert with all the text in lower case letters.
After the material is changed to lower case, we concatenate the text string to "1. Materials: "
using the strcat function. The note insertion point is relative to the starting point by the distance
in the variable pt.

 5-20

Most of the command �text� lines of code are the same except for these special considerations
we see in our exercise. When we use the text �%%p" and "%%d" in the tolerance notes will
place the plus and minus symbol (±) and the degree symbol (°) in the note. The itoa function
will change an integer or whole number to a string. Remember to leave spaces after segments of
text strings, so that when they are concatenated, the note has a space between each word.
Sometimes programmers place a set of quotes with a single space � " in between to add a space
in the sentence.

Practice typing the following examples of the command �text�, strcase and itoa functions at
the command line of AutoCAD.

Function Name Description

Command �Text� Text Command

Will place text in an
AutoCAD file based upon
the insertion point, text
height, rotation and text
string.

Examples
Type in each LISP expression

(setq sp (list 0 0 0))
(setq txtht 0.125)
(command "text" sp txtht
"0" "Notes:�)

Places the text Notes: at the
drawing origin

Function Name Description

strcase String Case
Changes the case of any text
string

Examples
Change to upper case text (strcase �hello�)

Answer: �HELLO�

Change to lower case text (strcase �HELLO� T)

Answer: �hello�

Function Name Description

itoa Integer to a String
Will convert a whole
number (integer) to a text
string

Example
Change a integer represented
by the variable filename to a
text string

(setq filename 1000))
(itoa filename)

Answer: �1000�

Change a integer 1000 to a
text string �1000�

(itoa 1000) Changes 1000 to �1000�

 5-21

Ending the Program

To end the program, we will
set the object snap mode
back to the original settings
by using the setvar function
followed by the variable osm
which holds the original
integer containing the Osnap
settings. Type the following
code.

(setvar "osmode" osm)

 Figure 5.18 � End of Program

To end the program, we will
need to place a parenthesis at
the end of the code to close
the defun c:nm function.
Type the following code.

(princ)

)

 Figure 5.19 � Using the Princ Function

The princ function used in this routine will allow the program to end without printing the last
line of the program to the command line. Without this function the command line can show a
number or text that may not make sense to the use. This function is used to keep your code neat.

Practice typing the following examples of the princ function at the command line of AutoCAD.

Function Name Description

princ Princ Function

Will allow the program to
run without printing the last
line of the code to the
command line

Example

Typing an expression at the
command line without the
princ function

(setq a �Hello�) Answer: �Hello�

Typing an expression at the
command line without the
princ function

(setq a �Hello�)(princ) Answer: nothing

 5-22

Saving the Program

Now that the program is
finished, we need to double
check our typing with the
text in this manual and then
save our program to our
folder named �Visual
AutoLISP Programs�.

Make sure the Look in list
box is displaying the Visual
LISP Programs folder and
then select the program
�notemaker� and press the
Load button. At the bottom
� left corner of the Load /
Unload Applications window
you will see a small text
display that was blank
initially but now displays the
text as shown in Figure 5.20,

�notemaker.LSP successfully
loaded�

 Figure 5.20 � Loading the Notemaker Program

After noting that the program
is loaded, press the Close
button and now when you
are in the AutoCAD
program, an AutoCAD
message window appears in
the middle of the graphics
display. The copyright and
information to start the
program is shown.

 Figure 5.21 � The Alert Message

Running the Program

Press the OK button if you agree with the message and follow your own instructions by typing
nm at the command line. The message �Pick starting point� appears on the command line and
the we should select a point at the lower left hand corner of the AutoCAD graphics display.

 5-23

The initial command line text
is shown in Figure 5.22.
Answer the questions to the
prompts such as �0.125� for
the text height, �Aluminum�
for the material, �2� coats of
enamel, �White� color,
�Semi gloss� texture and
standard tolerances. The
notes will appear on the
graphical display as shown in
Figure 5.23.

 Figure 5.22 � Starting the Program

Figure 5.23 � The Notes in AutoCAD

Programs creating and placing text on a drawing are very easy to write once we have achieved
writing the first program with these new functions. There are addition exercises for text based
routines in the appendixes of this manual. Written below is the entire notemaker.LSP code for
your benefit.

* World Class CAD Challenge 04-14* - Open a New AutoCAD file and type the entire set
of mechanical notes on proper layers, using proper dimensions and finally placing the
points and x and y grid on the drawing. Save your drawing as notemaker.dwg. Open the
Visual AutoLISP editor and code the notes problem using the Construction coding
method. Save the code as notemaker.lsp.

Send your copy of your code for verification to the authors of these problems to have your
name and location posted. See the web site for instructions at

 www.worldclasscad.com

 5-24

;;; notemaker.lsp
;;; a program that writes notes to a mechanical part drawing
;;; copyright 1999 by charles w. robbins

(alert "notemaker.lsp - copyright 1999 by charles robbins. type nm to
start")

;;; start the program

(defun c:nm (/)

;;; drawing setup

(setq osm (getvar "osmode�)) ; gets drawings osnap settings
(setvar "osmode� 0) ; sets osnaps to none

;;; user input

(setq sp (getpoint "\nPick starting point "))
(setq txtht (getreal "\nWhat is the text height? �))
(setq matl (getstring T "\nWhat is the material? �))
(setq coats (getint "\nHow many coats of enamel? �))
(setq c_color (getstring T "\nWhat is color of the enamel? �))
(setq c_texture (getstring T "\nWhat is the enamel texture? �))
(initget 1 "y n")
(setq q1 (getkword �\nDo you want standard tolerances? [y n] �))
(if (= q1 "y")(setq frac "1/16"
 1dec "0.06"
 2dec "0.03"
 3dec "0.010"
 ang "0.5%%d"
)
)
(if (= q1 "n")(setq frac (getstring "\nfraction ")
 1dec (getstring "\n1 dec? �)
 2dec (getstring "\n2 dec? �)
 3dec (getstring "\n3 dec? �)
 ang (getstring "\nangular? ")
)
)

;;; point assignment

(setq pt (strcat "@0,-" (rtos (* 2 txtht))))

;;; add text to drawing

(command "text" sp txtht "0" "Notes:")
(command "text" pt "" "" (strcat "1. Materials: " (strcase matl T) "."))
(command "text" pt "" "" "2. Remove all sharp edges and burrs.")
(command "text" pt "" "" (strcat "3. Paint with one coat of primer and with
" (itoa coats) " coat(s) of " (strcase c_texture T) " " (strcase c_color T)
" enamel.�)
(command "text" pt "" "" "4. Tolerances unless otherwise specified: ")

 5-25

(command "text" pt "" "" (strcat " Fraction: %%p" (strcase frac T)))
(command "text" pt "" "" (strcat " 1 decimal: %%p" (strcase 1dec T)))
(command "text" pt "" "" (strcat " 2 decimal: %%p" (strcase 2dec T)))
(command "text" pt "" "" (strcat " 3 decimal: %%p" (strcase 3dec T)))
(command "text" pt "" "" (strcat " Angular: %%p" (strcase ang T) "%%d"))

;;; end of program

(setvar "osmode" osm) ; resets drawings osnap settings
(princ)

)

