
C h a p t e r 7A

Making a Multiview
Drawing

In this chapter, you will learn how to use the following AutoLISP
functions to World Class standards:

1. Learn How to Make Multiple Views with Visual LISP
2. Starting the Code by Launching the Visual LISP Editor
3. Saving the Object Snap Settings and Then Turning Them Off
4. Using Getpoint to Obtain a Point on the Graphical Display
5. Using Getreal to Obtain a Real Number from the Keyboard
6. Creating Layers with the Visual AutoLISP Command

Function
7. Doing the Math in Visual AutoLISP
8. Making Point Assignments in Visual AutoLISP
9. Drawing in Visual AutoLISP
10. Ending the Program
11. Saving the Program
12. Loading the Program
13. Running the Program

7A-1

Learn to Make Multiple Views with Visual LISP

In this chapter, we will create more than one view so that by the end of this textbook, we will be
making entire drawings with the Visual AutoLISP code. In Figure 7A.1, we see a sketch of a
bracket. We see that there is a front and a top view. There are four mounting holes on the base
of the bracket and a single through hole at the top of the metal development. We define the part
by a length (lg), a width (wd), a height (hgt), a platform width (pf), metal thickness (thk), the
mounting hole diameter (mh) and the through hole diameter (hl). We can observe three types of
linetypes; continuous, hidden and center lines.

Figure 7A.1 – Sketch of the Bracket

After making a sketch, we will identify every endpoint of the lines in the bracket with a “P” and
a number. In our problem, we will use the mirror command multiple times, so some lines, arcs
and circles will not be drawn but copied using modify commands. After the points are shown,
we then visually define the points by imposing an X and Y grid. Later, when we code the
bracket routine, we will define P1 as X1 and Y2. We have found that this technique makes the
program a little longer, but takes the complexity out of the algebra.

The next sketch shown in Figure 7A.2 illustrates the x and y grid that will make up the
coordinates for every point.

7-2

Figure 7A.2 – X and Y Grid

This program will have every section of the Construction Code. We will create layers to place
the different types of lines on the drawing. We will draw lines and arcs. We will use the
modifying tool, Mirror command with the Crossing selection technique to reduce the amount of
the entities to create the bracket. In the table below, we can see the Construction steps listed for
our benefit.

Step 1 Start the program
Step 2 Drawing setup
Step 3 User input
Step 4 Do the math
Step 5 Point assignments
Step 6 Lets draw
Step 7 End the program

The math on this problem is very simple, so we will do all the procedures in order on this
exercise. The first step we need to take is to launch the Visual LISP Editor in AutoCAD.

7-3

Starting the Code by Launching the Visual LISP Editor

Open the Visual LISP Editor
and on the first line type the
comment

;;; bracket.lsp

The program name is always
on the first line of the code.
The semicolons cause the
statement to become a
comment so the line of code
will not be read.

 Figure 7A.3 – Starting the Bracket Program

The next comments in the program will be the details concerning what the routine will do. In
this program, there are comments after almost every line of code.

Next, we will create an
AutoCAD Message by
taking the information listed
in the comments and placing
the text in the alert function.
On the first line of the alert
expression, the program and
the copyright information is
keyed.

 Figure 7A.4 – Adding the Alert Expression

Add a new comment

;;; start the program

Then we start the program
with the defun function,
which means define function.
Begin with the open
parenthesis then defun, then
a c: which will allow the
program to run on the
AutoCAD command line.

 Figure 7A.5 – The Defun Expression

7-4

Practice typing the following examples of the alert function at the command line of AutoCAD.

Function Name Description

alert AutoCAD Message

The alert function will
create an AutoCAD message
window appear on the
graphical display with an
OK button to close the
message window.

Examples
At the beginning of the
program

(alert "bracket.lsp -
copyright 1999 by charles
robbins. type bracket to
start")

Window appears on the
graphical display

As an error prompt (alert "Error: Type units in
inches”)

Window appears on the
graphical display

Next, we type bracket which will be the execution symbol to start the program. Keep in mind
the alert message that stated “type bracket to start”. The alert message text and the defun
symbol must match. The open and closed parenthesis “()”following the bracket enclosing
nothing means there will not be any defined arguments or local variables for this program.
After that, we need to make changes to the AutoCAD System Variables that may interfere with
the running of the code and automatically drawing the lines and arcs perfectly.

Practice typing the following examples of the defun function at the command line of
AutoCAD.

Function Name Description

defun Define Function
The define function leads off
the beginning of the
program

Examples
Place a c: in front of the
program, hello. Allows hello
to be typed at the keyboard to
execute the code

(defun c:hello (/) (print “Hi
Ya All”))

Answer: C:HELLO
Type: hello
Returns: “Hi Ya All”

When the code is used inside
another program, do not place
the c: in front of the program
name

(defun hello (/) (print “Hi
Ya All”))

Answer: HELLO
Type: (hello)
Returns: “Hi Ya All”

7-5

Saving the Object Snap Settings and then Turning Them Off

In the next section of the code, we will turn off the drawing Object Snaps so they cannot
possibly interfere with the insertion of the drawing notes. In order to accomplish this task, we
you need to understand the getvar and the setvar functions. The getvar function will obtain a
drawing setting, so we can save the number or text string for future use. The setvar function
will allow us to change a system variable, like turning off the Object Snaps.

Start with a new comment

;;; drawing setup

And type the code

(setq osm (getvar “osmode”))

; gets osnap settings and
assigns to osm

 Figure 7A.6 – Saving and Turning Off Object Snaps

Next, we will turn off the drawing’s object snaps by setting the system variable “osmode” to 0
using this line of code. Add the comment as shown.

(setvar “osmode” 0) ; turns osnap settings off

Let’s talk about the expression, (setq osm (getvar “osmode”)). The function setq means set
quotient and we will use the function to create a variable osm which stands for object snap
mode, a variable name that we just made up. The variable osm will hold the integer
representing the “osmode” system variable’s setting. To get the number use the function getvar
followed by the name of system variable inside a set of quotes.

To turn off a system variable in many cases in setting the variable to zero. In the expression,
(setvar “osmode” 0), the function setvar followed by a system variable inside a set of quotes
like “osmode” then a 0 will result in turning off the Object Snap settings.

Practice typing the following examples of the setq, getvar and setvar functions at the
command line of AutoCAD.

7-6

Function Name Description

setq Set Quotient
Allows the user to assign a
real number, integer, string
or list to a variable

Examples
Set the variable a the text
string World Class CAD

(setq a “World Class CAD”)

Answer: “World Class
CAD”

Set the variable counter the
integer 0

(setq counter 0)

Answer: 0

Set the text height variable
txtht the real number 0.125

(setq txtht 0.125)

Answer: 0.1250

Set the point variable sp the
list of 0,0,0

(setq sp (list 0.0 0.0 0.0))

Answer: (0,0,0)

Function Name Description

getvar Get a variable
Allows the user to obtain a
system variable setting from
an AutoCAD drawing

Examples
Turn on the endpoint,
midpoint, quadrant,
intersection and
perpendicular Object
Snaps

(setq osm (getvar “osmode”)) Answer: 179

Get the AutoCAD
version number

(setq osm (getvar “acadver”)) Answer: "16.2s (LMS
Tech)"

Function Name Description

setvar Get a variable
Allows the user to obtain a
system variable setting from
an AutoCAD drawing

Examples
Turn off the Object
Snaps

(setvar “osmode” 0)) Answer: 0

Using Getpoint to Obtain a Point on the Graphical Display

In the User Input section of the Construction Code, we need to expand into new areas besides
just requesting the starting point and the getting a measurement using the getreal function as we
did in the first eight programs.

7-7

The first function we will
examine together is getpoint.
This tool will allow the
program user to select a
point on the graphical
display with their mouse.
Following getpoint is a text
string usually written is a
commanding or questioning
format.

 Figure 7A.7 – Using the Getpoint Function

The user input of selecting a point begins with a comment.

;;; user input

Then type the following code:

(setq sp (getpoint “\nPick the starting point ”))

We use the setq expression to assign the three point list (X, Y and Z) to the variable sp
representing the starting point. After the function getpoint, a programmer has the option, in
which we have chosen, to add a line of text prompting the user to “Pick the starting point”
and we also modified the prompt in a small way. Notice that in front of the capital P in the
word Pick, a “\n” is added. That will place the command “Pick the starting point” without
containing those two characters to start on a new command line in the AutoCAD program.

Periodically we will work at an organization that wants their details in the exact location of their
drawing. When we face a programming problem such as this the starting point expression will
change. First instance, let us make believe that the detail at this company starts at the X and Y
coordinates 14, 10. Then in this bracket code, we would change the starting point expression to:

(setq sp (list 14 10 0))

This will place the beginning of the notes in an exact position for every occasion.

Practice typing the following examples of the setq and getpoint functions at the command line
of AutoCAD.

7-8

Function Name Description

setq Set Quotient
Allows the user to assign a
real number, integer, string
or list to a variable

Examples
Set the variable a the text
string World Class CAD

(setq a “World Class CAD”)

Answer: “World Class
CAD”

Set the variable counter the
integer 0

(setq counter 0)

Answer: 0

Set the text height variable
txtht the real number 0.125

(setq txtht 0.125)

Answer: 0.1250

Set the point variable sp the
list of 0,0,0

(setq sp (list 0.0 0.0 0.0))

Answer: (0,0,0)

Function Name Description

getpoint Get a Point

Allows the user to obtain a
point on the graphical
display by selecting with a
mouse

Examples
Get a starting point (setq sp (getpoint "\nPick

starting point"))
Answer:
Pick starting point
Then select a point and the
will return a list like:
(30.471 28.4052 0.0)

Using Getreal to Obtain a Real Number from the Keyboard

To ask the question, “What is
the bracket’s length?”, we will
use the getreal function. We
use getreal to allow the LISP
program user to type a
number containing decimals
with their keyboard. The
getreal expression is set
within the (setq lg …….)
code.

 Figure 7A.8 – Using the Getreal Function

7-9

So type the following compound expression:

(setq lg (getreal “\nWhat is the bracket’s length? ”))

The information that the user types with the keyboard is stored in the variable name lg. We will
never pick a variable name that matches an AutoCAD command.

Whenever we are not quite sure whether the answer is going to be a whole number or a decimal,
we will use the getreal function. Using another function which will only allow whole numbers
will never allow the acceptance of a decimal.

If you look at the Visual LISP Editor in Figure 7A.8, you will notice that we dressed the last
two expressions so that the questions line up perfectly. You will pick up on this characteristic
when the program is running and the typed answers to the questions line up neatly.

Here are the user prompts for all of the critical dimensions of the bracket.

(setq lg (getreal "\nWhat is the bracket's length? "))
(setq wd (getreal "\nWhat is the bracket's width? "))
(setq hgt (getreal "\nWhat is the bracket's height? "))
(setq thk (getreal "\nWhat is the bracket's thickness? "))
(setq pf (getreal "\nWhat is the platform length? "))
(setq hl (getreal "\nWhat is the mounting hole size? "))
(setq mh (getreal "\nWhat is the through hole size? "))

Practice typing the following examples of the getreal function at the command line of
AutoCAD.

Function Name Description

getreal Get a Real Number
Allows the user to obtain a
real number by allowing the
user to type at the keyboard

Examples

Ask for a number, user types a
whole number and the reply is
changed to a real number

(setq txtht (getreal "\nWhat
is the text height?”))

Answer:
What is the text height?
Then type: 1
1.0

Ask for a number, user types a
fraction and the reply is
changed to a real number

(setq txtht (getreal "\nWhat
is the text height?”))

Answer:
What is the text height?
Then type: 1/8
0.125

Now we will create the layers we need for this project.

7-10

Creating Layers with the Visual AutoLISP Command Function

We will control the type of
lines and their color with
layers. In this problem, we
will create four layers and use
only two. Two layers,
dimension and text will be
used in other chapters to
dimension and add notes.

 Figure 7A.9 – Creating Layer in AutoLISP

An easy way to make a layer for a detail is to use the command function and to follow the
creating a new layer process. This can be harder for individuals just newly training with
AutoCAD, since many computer aided design tools are now in dialogue boxes and we cannot
easily view all the options that are available with a command function. We will share the most
common options in the table below.

Command Layer Function Command Layer Function
(command "layer" "n" "hidden" “”) Makes a new layer named “hidden”

(command "layer" "c" "8" “hidden" “”) Sets the layer color to “color 8” for
layer named “hidden”

(command "layer" "lt" "center" ”center" "")

Sets the layer linetype to “center” for
layer named “center”

(command "layer" "s" "hidden" “”) Sets the current layer as “hidden”
(command "layer" "f" "hidden" “”) Freezes the layer named “hidden”
(command "layer" "t" "hidden" “”) Thaws the layer named “hidden”
(command "layer" "on" "hidden" “”) Turns the layer named “hidden” on
(command "layer" "off" "hidden" “”) Turns the layer named “hidden” off
(command "layer" "lo" "hidden" “”) Locks the layer named “hidden”
(command "layer" "u" "hidden" “”) Unlocks the layer named “hidden”

We can combine layer options such as new and color and create a command line expression that
will both create a new layer and set the color for that layer. When we use the color option "c",
the next item is the name or number of the color, followed by the name of the layer. To end the
layer command expression, place an open and closed quote "" at the end of the code and then a
closed parenthesis.

Type the following lines in the bracket program.

;;; setup layers

7-11

(command "layer" "n" "dimension" "c" "red" "dimension" "")
(command "layer" "n" "text" "c" "green" "text" "")

Now we will make the center,
hidden and section layers in
the routine. We may be using
different colors or layer
names than what your
organization uses, so feel to
free to make changes to the
layer name or color that
defines your group’s standard
layers. changes

 Figure 7A.10 – Creating Layer with Special Linetypes

If the layer name, color and linetype already exist in the drawing, nothing will change when
these lines of code execute.

Type the following lines in the bracket program.

(command "layer" "n" "center" "c" "blue" "center" "lt" "center" "center" "")
(command "layer" "n" "hidden" "c" "magenta" "hidden" "lt" "hidden" "hidden" "")

Doing the Math in Visual AutoLISP

Now, we will do the math section of the code. Again the setq function is the choice for
assigning values to the variables X1, X2, X3, X4, X5, X6, X7, Y1, Y2, Y3, Y4, Y5, Y6, Y7,
Y8, Y9, Y10, and Y11.

The car function is used with
variable sp (the starting point)
to extract the x-coordinate of
the starting point list. If the
starting point is (4, 3, 0) then
(car sp) will return as 4 and
be assigned to the variable
X1. So the car function
returns the first number in the
list.

 Figure 7A.11 – Defining the X-Ordinates

7-12

That explains the use of car to find the coordinates x1, now we have to continue down the X
grid to obtain value for x7. To obtain the x7 coordinate, use the addition function + to add to
the x1 value. To get the number to add to the x1, we have to divide the bracket width LG by
two using the divide function / like so. Notice that the function is written first, followed by the
numerator LG and then the denominator 2.0.

(/ LG 2.0)

And place that expression in the addition expression to build a compound expression.

(+ x1 (/ LG 2.0))

Now assign the value to x2

x2 (+ x1 (/ LG 2.0))

Type the following lines in the bracket program using the sketch in Figure 7A.2 to find the X
ordinate the dimension that defines the horizontal measurements.

;;; math

(setq x1 (car sp)
 x7 (+ x1 (/ lg 2.0))
 x6 (- x7 (/ hl 2.0))
 x4 (- x7 (/ pf 2.0))
 x5 (+ x4 thk)
 x3 (+ x1 (/ (- lg pf) 4.0))
 x2 (- x3 (/ mh 2.0))
)

Likewise, the cadr function is
used with variable sp (the
starting point) to extract the y-
coordinate of the starting
point. Again, if the starting
point is (4, 3, 0) then (cadr
sp) will return as 3 and be
assigned to the variable y1. So
the cadr function returns the
second number in the list.

 Figure 7A.12 – Defining the Y-Ordinates

To find the value for the variable y3, we add the thickness thk to the variable y2. We use the
adding LISP function + to make the expression

y3 (+ y2 thk)

7-13

Other than for the measurement y2, all of the vertical distances are compiled by using the
adding or subtracting functions. Type the following lines in the bracket program using the
sketch in Figure 7A.2 to find the Y ordinate the dimension that defines the vertical
measurements.

(setq y2 (cadr sp)
 y1 (- y2 (* 2 thk))
 y3 (+ y2 thk)
 y4 (+ y3 (* 2 thk))
 y6 (+ y2 hgt)
 y5 (- y6 thk)
 y7 (+ y6 (* 2 thk))
 y8 (+ y7 (* 4 thk))
 y9 (+ y8 (* 2 mh))
 y10 (+ y8 (/ wd 2.0))
 y11 (+ y8 wd)
)

Making Point Assignments in Visual AutoLISP

One of the easiest sections of
code for a new or experienced
programmer to accomplish is
the point assignments, where
one assigns X and Y
coordinates to the point
vertexes. Basically, we did
the work when we made the
Bracket sketch. When we
define the points for the
footer, remember when we
read that coordinate P0 is (X1,
Y1). P1 is (X1, Y2). P2 is
(X4, Y2). P3 is (X5, Y3).
Now we write a setq
expression setting these grids
coordinates to the points p1,
p2, p3, p4 through p28.

 Figure 7A.13 – Defining the Point Assignments

The list function can create an X, Y and Z coordinate by typing the appropriate X and Y values
after the function name. We do not need to add the Z coordinate if the value is going to be zero.
(See Figure 7A.13)

7-14

Type the following lines in the bracket program using the sketch in Figure 7A.2 to find the X
and Y coordinate for each point.

; point assignments

(setq p0 (list x1 y1)
 p1 (list x1 y2)
 p2 (list x4 y2)
 p3 (list x5 y3)
 p4 (list x5 y5)
 p5 (list x7 y5)
 p6 (list x7 y6)
 p7 (list x5 y6)
 p8 (list x4 y5)
 p9 (list x4 y3)
 p10 (list x1 y3)
 p11 (list x6 y5)
 p12 (list x6 y6)
 p13 (list x1 y8)
 p14 (list x1 y10)
 p15 (list x4 y8)
 p16 (list x4 y10)
 p17 (list x5 y8)
 p18 (list x5 y10)
 p19 (list x7 y8)
 p20 (list x7 y10)
 p21 (list x3 y9)
 p22 (list x3 y1)
 p23 (list x3 y4)
 p24 (list x7 y1)
 p25 (list x7 y7)
 p26 (list x2 y2)
 p27 (list x2 y3)
 p28 (list x7 y11)
)

Drawing in Visual AutoLISP

Before drawing the first line
in the Bracket detail, we will
set the current layer as “0”.
Before we draw an entity
using the command functions
of line, circle and arc tools,
we will continually place the
article on the precise drawing
layer. Type the following
code to set the current layer to
“0”.

 Figure 7A.14 – Setting the 0 Layer as Current

7-15

(command "layer" "s" "0" "")

Now that the layer is set to 0, we will proceed to draw the front view of the bracket. When
automatically drawing any entity in AutoCAD, the programmer uses the command function
which evokes any AutoCAD standard command. We have to state this rule, since ARX
commands typed at the command line like Render or Rotate3D need to be executed differently,
which we did in Chapter 6 with the saveimg function. After the command function is typed,
the command “line” follows in quotes, then by the point vertexes p2 p1 p10 p9 p8 of the line
segment and finally “” to end the command.

Type the following code:

;;; lets draw

(command "line" p2 p1 p10 p9 p8 "")

And the LISP routine draws
four lines representing the
perimeter of the bracket on
the AutoCAD graphical
display. We draw three more
lines using the line command
twice more.

(command "line" p3 p4 p5 "")
(command "line" p7 p6 "")

 Figure 7A.15 – Drawing Lines with LISP Commands

Now, we will draw the two
arcs. In AutoCAD, arcs are
drawn in a counterclockwise
direction so we need to select
p2 as the starting point of the
first arc. We chose to use the
starting point, end point and
radius definition to draw the
arcs, but other coders may
want to use another drawing
strategy which will be fine.

 Figure 7A.16 – Drawing Arcs with LISP Commands

Keying an “e” for endpoint, we follow with point p3. Finally, we key “r” for radius and type
thk to supply the radius. (Figure 7A.16)

7-16

Arcs are less forgiving if we make an error in writing the code since if the AutoCAD program
finds that creating the curved entity is impossible, nothing will be placed on the graphics screen
to give us any clue what went wrong. When making a mistake with a point in the line
command will have the CAD program drawing a point from let’s say p1 to p3 and we can see
that there is an error and that the line should go from p1 to p2. Check your beginning and
ending arc points carefully and use the right radius variable.

So key the following code to create the three arcs:

(command "arc" p2 "e" p3 "r" thk)
(command "arc" p7 "e" p8 "r" thk)

We will draw a hidden line
after setting the current layer
to “hidden”.

(command "layer" "s" "hidden" "")
(command "line" p26 p27 "")

 Figure 7A.17 – Draw a Hidden Line

We will mirror the left side of
the front view of the bracket
to the right across a vertical
centerline from p22 to p23.
For the select last function to
work properly, all the entities
need to be visible, so we first
perform the zoom extents
command. Then, we mirror
the last line we drew across
the centerline as shown.

 Figure 7A.18 – Mirror a Hidden Line

(command "zoom" "e") ; zoom extents
(command "mirror" "L" "" p22 p23 "") ; mirror hidden line

7-17

We draw another hidden line
and then a centerline after
setting the layer to “center”.
We finish the front view with
another mirror using the
crossing selection technique.
The last line drawn in the
front view is the main vertical
centerline.

We now will draw the top
view.

 Figure 7A.19 – Finish the Front View

We can draw the top view
using the line, circle, zoom,
mirror and layer commands.
Some programmers will draw
entities in different order and
this does really matter. The
essential task is to use the
correct points and put the
lines and circles in the correct
position.

 Figure 7A.20 – Draws the Wood Components

Ending the Program

To end the program, we will
set the object snap mode
back to the original settings
by using the setvar function
followed by the variable osm
which holds the original
integer containing the Osnap
settings. Type the following
code.

(setvar "osmode" osm)

 Figure 7A.21 – End of Program

7-18

To end the program, we will need to place a parenthesis at the end of the code to close the
defun c:bracket function. Type the following code.

(princ)
)

The princ function used in this routine will allow the program to end without printing the last
line of the program to the command line. Without this function the command line can show a
number or text that may not make sense to the use. This function is used to keep your code neat.

Practice typing the following examples of the princ function at the command line of AutoCAD.

Function Name Description

princ Princ Function

Will allow the program to
run without printing the last
line of the code to the
command line

Example

Typing an expression at the
command line without the
princ function

(setq a “Hello”) Answer: “Hello”

Typing an expression at the
command line without the
princ function

(setq a “Hello”)(princ) Answer: nothing

Saving and Running the Program

Now that the program is
finished, we need save our
program to our folder.

Then to run the program, we
will make sure the Look in
list box is displaying the
Visual LISP Programs folder
and then select the program
“bracket” and press the Load
button. At the bottom – left
corner of the Load / Unload
Applications window you
will see a small text display
that was blank initially but
now displays that the
program is loaded.

 Figure 7A.22 – Loading the Bracket Program

7-19

After noting that the program
is loaded, press the Close
button and now when you
are in the AutoCAD
program, an AutoCAD
message window appears in
the middle of the graphics
display. The copyright and
information to start the
program is shown.

 Figure 7A.23 – The Alert Message

Press the OK button if you
agree with the message and
follow your own instructions
by typing bracket at the
command line. The message
“Pick starting point” appears
on the command line and
then we should select a point
at the lower left hand corner
of the AutoCAD graphics
display.

 Figure 7A.24 – Starting the Program

Programs creating and placing text on a drawing are very easy to write once we have achieved
writing the first program with these new functions. There are addition exercises for text based
routines in the appendixes of this manual. Written below is the entire bracket.LSP code for
your benefit.

;;; bracket.lsp
;;;
;;; a lisp routine that draws the top and front view of a bracket
;;;
;;; Copyright (C) 2010 by Charles Robbins
;;;
;;; Charles Robbins provide this code for your use. Use the code to your benefit
;;; and at your own risk. Charles Robbins does not warrant that the code is error
;;; free in your application.

7-20

(alert "bracket.lsp - copyright 2010 by Charles Robbins. Type bracket to start.")

;;; start program

(defun c:bracket (/)

;;; setup

(setq osm (getvar "osmode"))
(setvar "osmode" 0)

;;; ask questions

(setq sp (getpoint “\nPick the starting point ”))

(setq lg (getreal "\nWhat is the bracket's length? "))
(setq wd (getreal "\nWhat is the bracket's width? "))
(setq hgt (getreal "\nWhat is the bracket's height? "))
(setq thk (getreal "\nWhat is the bracket's thickness? "))
(setq pf (getreal "\nWhat is the platform length? "))
(setq hl (getreal "\nWhat is the mounting hole size? "))
(setq mh (getreal "\nWhat is the through hole size? "))

;;; setup layers

(command "layer" "n" "dimension" "c" "red" "dimension" "")
(command "layer" "n" "text" "c" "green" "text" "")
(command "layer" "n" "center" "c" "blue" "center" "lt" "center" "center" "")
(command "layer" "n" "hidden" "c" "magenta" "hidden" "lt" "hidden" "hidden" "")

;;; math

(setq x1 (car sp)
 x7 (+ x1 (/ lg 2.0))
 x6 (- x7 (/ hl 2.0))
 x4 (- x7 (/ pf 2.0))
 x5 (+ x4 thk)
 x3 (+ x1 (/ (- lg pf) 4.0))
 x2 (- x3 (/ mh 2.0))
)

(setq y2 (cadr sp)
 y1 (- y2 (* 2 thk))
 y3 (+ y2 thk)
 y4 (+ y3 (* 2 thk))
 y6 (+ y2 hgt)
 y5 (- y6 thk)
 y7 (+ y6 (* 2 thk))
 y8 (+ y7 (* 4 thk))
 y9 (+ y8 (* 2 mh))
 y10 (+ y8 (/ wd 2.0))
 y11 (+ y8 wd)
)

7-21

; point assignments

(setq p0 (list x1 y1)
 p1 (list x1 y2)
 p2 (list x4 y2)
 p3 (list x5 y3)
 p4 (list x5 y5)
 p5 (list x7 y5)
 p6 (list x7 y6)
 p7 (list x5 y6)
 p8 (list x4 y5)
 p9 (list x4 y3)
 p10 (list x1 y3)
 p11 (list x6 y5)
 p12 (list x6 y6)
 p13 (list x1 y8)
 p14 (list x1 y10)
 p15 (list x4 y8)
 p16 (list x4 y10)
 p17 (list x5 y8)
 p18 (list x5 y10)
 p19 (list x7 y8)
 p20 (list x7 y10)
 p21 (list x3 y9)
 p22 (list x3 y1)
 p23 (list x3 y4)
 p24 (list x7 y1)
 p25 (list x7 y7)
 p26 (list x2 y2)
 p27 (list x2 y3)
 p28 (list x7 y11)
)

; lets draw the front view

 (command "layer" "s" "0" "") ; sets layer to 0
(command "line" p2 p1 p10 p9 p8 "") ; draw the line
 (command "line" p3 p4 p5 "") ; draw the line
(command "line" p7 p6 "") ; draw the line
(command "arc" p2 "e" p3 "r" thk) ; draw the arc
(command "arc" p7 "e" p8 "r" thk) ; draw the arc
(command "layer" "s" "hidden" "") ; sets layer to hidden
(command "line" p26 p27 "") ; draw the line
(command "zoom" "e") ; zoom extents
(command "mirror" "L" "" p22 p23 "") ; mirror hidden line
(command "line" p11 p12 "") ; draw the line
(command "layer" "s" "center" "") ; sets layer to center
(command "line" p22 p23 "") ; draw the line
(command "zoom" "e") ; zoom extents
(command "mirror" "c" p0 p25 "" p24 p25 "") ; mirror the front view
(command "line" p24 p25 "") ; draw the line

; lets draw the top view

(command "layer" "s" "0" "") ; sets layer to 0
(command "line" p19 p13 p14 "") ; draw the line

7-22

7-23

(command "line" p15 p16 "") ; draw the line
(command "circle" p21 "d" mh) ; draw the circle
 (command "layer" "s" "hidden" "") ; sets layer to hidden
(command "line" p17 p18 "") ; draw the line
(command "zoom" "e") ; zoom extents
(command "mirror" "c" p13 p20 "" p14 p20 "") ; horizontal mirror
(command "zoom" "e") ; zoom extents
(command "mirror" "c" p13 p28 "" p19 p20 "") ; vertical mirror
(command "layer" "s" "0" "") ; sets layer to 0
(command "circle" p20 "d" hl) ; draw the circle
(command "layer" "s" "center" "") ; sets layer to 0

;;; end of program

 (command "zoom" "e")
(setvar "osmode" osm)
(gc)
(princ)
)

