
 8-1

C h a p t e r 8

List Manipulation
Functions

In this chapter, you will learn how to use the following AutoLISP
functions to World Class standards:

1. Manipulating Entities without the Command Function
2. Understanding the AutoCAD Database
3. Starting the Changetext Code
4. Learning to Use Ssget and the Print Function
5. Using the Getstring Function
6. Using the Sslength Function and Setting the Counter to Zero
7. Using a While Loop in a LISP Routine
8. Using the Ssname and Entget Functions in a LISP Routine
9. Using the Assoc Function in a LISP Routine
10. Using the Cons Function in a LISP Routine
11. Using the Subst Function in a LISP Routine
12. Using the Entmod Function in a LISP Routine
13. Finishing the Loop and Ending the Program
14. Loading and Running the Changetext Program

 8-2

Manipulating Entities without the Command Function

In this chapter, we will explore two new concepts in the art of programming. The first being
using subroutines which are programs that are common to more than one routine. The second
being the manipulation of entities without using the command functions such as line, circle or
text. And both of these ideas are important when creating drawings that require more freedom
of design than what we receive when using the Construction code.

Let me explain. Did you notice that when you were using the Construction code, that although
this powerful technique will allow you to draw any orthographic view of an existing design, the
placement of the vertices are limited to the layout sketch that enabled you to quickly program
the routine. The Construction code will always be important since the technique enables a new
user to enter the field of Engineering Programming quickly and efficiently. What other way
would one will learn the 100 important AutoLISP functions and be able to write their 50 initial
programs, practicing to type the LISP syntax and troubleshooting their work. But there will be
a time in your professional experience where the customer demands more design flexibility and
the Construction code will be too constricting of a method to rely upon.

But let me be perfectly clear, flexibility does not mean disorganization. The subroutines that
we will build to be part of a larger code have commonality and therefore we can use
programming templates to both standardize and organize the routines so that any one in our
engineering offices can both read and understand our work. When do we use the Construction
code? Whenever we require a detail that is common to any drawing, we want to make a
program that will construct those orthographic views or 3D components using the seven steps
which are Start the Program, Drawing Setup, User Input, Do the Math, Point Assignments,
Let�s Draw and End the Program.

One of the techniques that we
will use in future programs
will appear at the beginning of
a program. After the defun
statement, and before the
program name, we would place
a c: which made the program
name a new command function
after loading the program into
AutoCAD. When we write
subroutines which can be run
in any master routine, we will
leave the c: out of the code. In
Figure 8.1, the c: is left out of
the program. The program is
intentionally written as a
subroutine.

 Figure 8.1 � An AutoLISP Subroutine

 8-3

This code can be pasted at the end of the any larger program and when we want the subroutine
to execute, we will just write the following in our coded master syntax.

(roundwindow)

At that point in the master program, the loaded roundwindow subroutine will execute.

This type of programming gives the designer flexibility in the master program. If the
roundwindow subroutine was part of many different window options in a door program, then
the program user can select many types of door enhancements with in the same master door
program. Subroutines enable us to maintain smaller master programs and we have the
capability of adding or removing subroutines with simplicity.

The other equally important technique which we will explore in this chapter is the use of
functions to manipulate the entities that already exist in the drawing and to read information
from existing lines, circles and text. The way that we do this is through obtaining a selection set,
then manipulating the list information contained in the AutoCAD database within the drawing.
This means that we will have to learn new functions and discover the techniques in which to use
them.

Understanding the AutoCAD Database

Before we continue to learn
write another expression, we
need to take the time to
understand how AutoCAD
controls the drawing
database. We can do this by
creating a single line of text
on the graphical display. So
go ahead and place the word
�Text� on the graphical
display as shown in Figure
8.2.

 Figure 8.2 � A Single Line of Text in AutoCAD

At the command line, type the expression listed below. The ssget function by itself will allow
the user to pick objects with a mouse.

(setq ss1 (ssget))

The AutoCAD program will return with a comment on the command line such as <Selection
set: 4>. Anytime we capture a data in a selection set we will notice the number changing. Now
type the following expression on the command line.

(setq entityname (ssname ss1 0))

 8-4

We are using entityname as the variable name. The AutoLISP function ssname gives the name
of an entity of the first item in the selection set ss1. The command line will come back with
<Entity name: 4006ae98>. An AutoCAD name has eight digits that can have 0 through 9 or A
to Z in each digit. To retrieve the first entity in the selection set using ssname, we follow the
function with an integer. AutoCAD starts counting with the number 0, so we have to remember
to always start our counts in a program at zero and not 1 when using the ssname function. Now
type the following expression on the command line.

(setq entitylist (entget entityname))

We are using entitylist as the variable name. The AutoLISP function entget will return the
entire database list that describes the line entity on the graphical display which is the first item
in the selection set ss1. The command line will come back with following data. Your data will
be different since your text is in a different location.

((-1 . <Entity name: 4006ae98>) (0 . "MTEXT") (330 . <Entity name: 4006acf8>)
(5 . "5B") (100 . "AcDbEntity") (67 . 0) (410 . "Model") (8 . "0") (100 .
"AcDbMText") (10 12.6265 30.8991 0.0) (40 . 0.125) (41 . 38.6837) (71 . 1) (72
. 5) (1 . "Text") (7 . "mechanical") (210 0.0 0.0 1.0) (11 1.0 0.0 0.0) (42 .
0.334243) (43 . 0.127046) (50 . 0.0) (73 . 1) (44 . 1.0))

For many AutoCAD expert operators this is a time of great discovery. The AutoCAD drawing
file has header information which contains information regarding how to set up the environment
for the actual drawing and then comes a complete collection of records which contain the data
for every drawing entity which you see in the drawing. The AutoCAD file is actually a three
dimensional database, where each coordinate in the list of data contains an X, Y and Z
measurement.

Every data field inside of each set of parenthesis begins with a group code. There is a table of
group codes in Appendix Z in this textbook. Common group codes that we use to extract data
all the time are in the table below.

0 Entity Type
1 Text
2 Block Name
8 Layer Name
10 Start or Insertion Point
11 End Point

In this chapter, we will learn how to change a text entity using the list manipulation functions.

Starting the Changetext Code

The program we are going to write is called Changetext. We begin the coded routine with
multiple comments stating the program name, a brief description stating the program�s
functionality and the copyright statement.

 8-5

After the initial comments,
the alert function is written
so that an AutoCAD
Message Box is launched
containing the program
name, copyright and
execution keyword for the
use to see. Next, the Start
Program comment is added
and is followed by the defun
statement

(defun c:ct (/)

 Figure 8.3 � Starting the Changetext Program

The letters ct represents the word changetext so the program user does not have to type the
entire text string when beginning the program.

Learning to Use Ssget and the Print Function

In prior exercises, we have used the ssget function using the last drawn and the filter options. In
both these cases, the user did not have to select any entities with their mouse, since ssget �L�
selects the last drawn object and the ssget �X� �((8 . �ball�)) will use a filter to select all the
entities on layer called �ball�. Sometimes, we will want the user to make decision in a program.
There are many advanced programs, where we allowed the code to select the entities
automatically and then each entity was presented to the viewer, one by one to decide whether
they want to change the object or let the item remain as is. We always called this technique
Presentation code, and we used the technique as a checking method where we wish to have
100% confirmation of all changes. In this program however, we will just allow the user to select
the text they wish to modify by using the straightforward ssget function.

When using the ssget
function, the computer aided
design user is able to select
single or multiple entities
with their mouse. But we
need to place a print
statement into the program
before placing the ssget
function. This will allow the
statement �Select the text to
change� to appear on the
AutoCAD command line.

 Figure 8.4 � Inserting a Print Statement

 8-6

After the print statement, we
will make a selection set
using ssget and store the
information collected in the
variable ss1. When we use
the basic ssget tool, the user
can select as many objects as
they wish. If they
accidentally select an entity
they do not desire, they can
still hold down the shift key,
reselect the object to remove
the entity from this selection
set.

 Figure 8.5 � Using the Ssget Function

Practice typing the following examples of the print and ssget function at the command line of
AutoCAD.

Function Name Description

print Print Function
Will print a text string to
the command line

Example
Print �Select text� at the
command line

(print �Select text�) Answer: �Select text�

Print �Program Done� at the
command line. If this is the
last line of the routine, use
the (princ) function

(print �Program
Done�)(princ)

Answer: �Program Done�

Function Name Description

ssget Obtain a Selection Set
Using a Filter

Will allow the user to select
entities using the mouse

Examples

Pick an object (setq ss1 (ssget)) Selection Set: 4

 8-7

Using the Getstring Function

The next part of the user
input section of the routine is
to ask the user to �type the
new text� which will be
stored in the variable named
textstring. We need to use
the getstring function to
obtain a text string and be
sure to place the capital T
behind the function name so
that spaces can be added by
the user.

 Figure 8.6 � Asking Questions Using the Getstring Function

Although we are using the getstring function, the user can enter any type of text at the
keyboard, such as capital letters, lowercase letters, numbers and special characters. All text in
the AutoCAD drawing or external files must be input as strings, so in this coded routine the
getstring function with a capital T is most desirable.

Practice typing the following examples of the getstring function at the command line of
AutoCAD.

Function Name Description

getstring Get a Text String
Allows the user to obtain a
text string by allowing the
user to type at the keyboard

Examples
Looking for a single word
response

(setq matl (getstring
"\nWhat is the material?�))

Answer:
What is the material?
Then type: Aluminum
�Aluminum�

What happens when two or
more words are typed

(setq matl (getstring
"\nWhat is the material?�))

Answer:
What is the material?
Then type: Stainless Steel
�Stainless�

Fix the space bar problem
with a T after getstring

(setq matl (getstring T
"\nWhat is the material?�))

Answer:
What is the material?
Then type: Stainless Steel
�Stainless Steel�

 8-8

Using the Sslength Function and Setting the Counter to Zero

After selecting the entities with the ssget function, we do not want to keep track of how many
objects that were picked with a mouse, so the sslength tool is the apparatus which we choose to
count the selections in the set.
The sslength function as
well as the rest of the list
manipulation tools is very
easy to learn since this
syntax of the written code is
very simple in application.
When using The sslength
function, an integer or whole
number is returned and we
will store that figure in the
variable named qty.

 Figure 8.7 � Obtaining the Size of the Selection Set

Type the following code is the Changetext program.

(setq qty (sslength ss1))

The sslength function is important when we use a while loop to sort through a selection set
automatically, since this represents the number of loops the program will run.

Practice typing the following examples of the sslength function at the command line of
AutoCAD.

Function Name Description

sslength Selection Set Length
Returns the number of
entities in a selection set

Examples

Select one object with the
code (setq ss1 (ssget))

(setq qty1 (sslength ss1)) Answers:
1

Select three objects with the
code (setq ss2 (ssget))

(setq qty2 (sslength ss2)) Answers:
3

Select ten objects with the
code (setq ss2 (ssget))

(setq qty3 (sslength ss3)) Answers:
10

 8-9

Now we will set the variable
named counter to zero by
typing

(setq counter 0)

Normally each time we begin
a while loop we will set a
counter to zero. Another
technique we will use in
other programs is to ask the
user if they wish to continue.

 Figure 8.8 � Setting the Counter to Zero

Using a While Loop in a LISP Routine

The next expression is the
code is the entrance to the
while loop.

(while (< counter qty)

A condition statement trails
the while function where we
ask whether the number
contained in variable named
counter is less than the
number contained in variable
named qty.

 Figure 8.9 � Starting the While Loop

A while loop will run anytime the condition set returns a true response in the code. If the user
selects one text object when the program is running then the integer value for qty will be 1. The
first time into the loop the condition is (< 0 1) which is true so all of the expression inside the
while loop will be read in the program. The second time into the loop the condition is (< 1 1)
which is false and so the while loop will not execute and the next expression in the code will be
read.

Notice that the expression below does not contain an ending parenthesis for the while function.

(while (< counter qty)

The ending parenthesis comes at the end of the list of expression inside of the while loop.

Practice typing the following examples of the while function at the command line of AutoCAD.

 8-10

Function Name Description

While While Loop

Will automatically select
entities using a filter such as
layer name, entity type like
circle.

Examples

Using a counter (while (< counter 5)

)

Will continue 5 times

Using a question (while (= ball �y�)

)

Will continue as long as ball
equals �yes�

Using the Ssname and Entget Functions in a LISP Routine

The AutoLISP function ssname gives the name of an entity in a selection set. In our program
example, ssname ss1 counter the entities are stored in ss1. The way we grab each object in the
set is that with each pass in the while loop the counter will progress by one. AutoCAD starts
counting with the number 0, so we set the counter in the program to zero and not one when
using the ssname function.

Then to open the list, we
place the entget function in
front of the (ssname ss1
counter) expression. Now
that the data before the entity
is written to a list, we will
store the information into the
variable named entitylist.
This type of compound
expression keeps our code
simple and neat, and we only
use one variable name.

 Figure 8.10 � Using the Entget and Ssname Functions

Now type the following expression on the command line.

(setq entitylist (entget (ssname ss1 counter)))

Practice typing the following examples of the ssname and entget functions at the command line
of AutoCAD.

 8-11

Function Name Description

ssname Selection Set Name
Returns the AutoCAD entity
number of 8 characters

Examples

After using the ssname
function

(setq entityname (ssname
ss1 0))

Answers:
<Entity name: 4006ad98>

Function Name Description

entget Get the Entity List
Returns the entity list of a
single AutoCAD entity

Examples
Pick a text string (setq entitylist (entget

entityname))

Answer:
((-1 . <Entity name: 4006ae98>) (0 . "MTEXT") (330 . <Entity name: 4006acf8>)
(5 . "5B") (100 . "AcDbEntity") (67 . 0) (410 . "Model") (8 . "0") (100 .
"AcDbMText") (10 12.6265 30.8991 0.0) (40 . 0.125) (41 . 38.6837) (71 . 1) (72
. 5) (1 . "Text") (7 . "mechanical") (210 0.0 0.0 1.0) (11 1.0 0.0 0.0) (42 .
0.334243) (43 . 0.127046) (50 . 0.0) (73 . 1) (44 . 1.0))

Using the Assoc Function in a LISP Routine

With the entire data list
containing all the
information pertaining to a
single entity in the variable
named entitylist, then to pick
out a single attribute such as
the text string, we ignore
other data such as layer,
insertion point and text
height. We do this with the
assoc function, adding the
group code of the attribute
we desire.

 Figure 8.11 � Pulling Out the Old Text String with Assoc

Now type the following expression on the command line.

(setq oldtext (assoc 1 entitylist))

The named variable oldtext will now contain a list surrounded by parentheses beginning with
the group code number one, separated by a period and finishing with the text string inside of
quotes.

 8-12

(1 . "Text")

Practice typing the following examples of the assoc function at the command line of AutoCAD.

Function Name Description

assoc Association

Looks in the data list for
an entity and returns the
individual data string
matching the group code

Examples
Searches the entire data list
for �text� and returns the list
with group code 1, text string

(setq oldtext (assoc 1 entitylist)) Answer: (1 . "Text")

Searches the entire data list
for �text� and returns the list
with group code 10, insertion
point

(setq ip (assoc 10 entitylist)) Answer:
(10 12.6265 30.8991 0.0)

Searches the entire data list
for �text� and returns the list
with group code 12. Returns
nil if there is none found.

(setq ip (assoc 12 entitylist)) Answer:
nil

Using the Cons Function in a LISP Routine

The next function we will
learn is for list construction
using the cons tool. We have
used the list function to
make a new point, but the
dot is not placed between the
group code and the data. The
cons function is the means to
build a new data field that is
correctly formatted.

 Figure 8.12 � Make a New Text List With Cons

When writing a construction expression begin with an open parenthesis, then the function name,
cons, the group code number, which in this case is 1 for text. Next, the text string will follow
which is stored in the variable named textstring. Lastly, end the cons expression with a closed
parenthesis. To assign the new list to a variable use the setq function as shown below.

(setq newtext (cons 1 textstring))

 8-13

Practice typing the following examples of the cons function at the command line of AutoCAD.

Function Name Description

cons Construct
Creates a new list with
the group code and data

Examples

Create a new list with a
group code and text

(setq newtext (cons 1 �hello�)) Answer: (1 . "hello")

Create a new list with a
group code and text inside
variable textstring

(setq textstring �new�)
(setq newtext (cons 1 textstring))

Answer:
(1 . "new")

Create a new list with a
group code and coordinate
inside variable pt

(setq pt (list 2.0 3.5 0.0))
(setq newtext (cons 10 pt))

Answer:
(10 2.0 3.5 0.0)

Using the Subst Function in a LISP Routine

To make a revised data
record for the new text in the
AutoCAD, we will learn how
to use the substitution tool,
subst. This is a very
straightforward function
where we state the new text
list is changing out the old
text list in the data record.
Then we save the data record
to the variable named
entitylist.

 Figure 8.13 � Use the Subst Function

When writing a substitution expression begin with an open parenthesis, then the function name,
subst, the variable containing the new list, which in this case is newtext. Next, the variable
named oldtext will follow, and then the variable representing the entire data record, entitylist.
Lastly, end the cons expression with a closed parenthesis. To assign the new list to a variable
use the setq function as shown below.

(setq entitylist (subst newtext oldtext entitylist))

Practice typing the following examples of the subst function at the command line of AutoCAD.

Function Name Description

Subst Substitute
Replaces an old list with a
new list in the AutoCAD
entity data list

 8-14

Examples
Replaces the old list with the
new list in the entity data list

(setq entitylist (subst
newtext oldtext entitylist))

Answer:
 ((-1 . <Entity name: 7ef60e98>) (0 . "MTEXT") (330 . <Entity name: 7ef60cf8>)
(5 . "8B") (100 . "AcDbEntity") (67 . 0) (410 . "Model") (8 . "0") (100 .
"AcDbMText") (10 8.64868 13.9756 0.0) (40 . 0.2) (41 . 6.75825) (71 . 1) (72 .
5) (10 2.0 3.5 0.0) (7 . "Standard") (210 0.0 0.0 1.0) (11 1.0 0.0 0.0) (42 .
0.733333) (43 . 0.2) (50 . 0.0) (73 . 1) (44 . 1.0))

Using the Entmod Function in a LISP Routine

When we want to update the
current drawing database, the
entity modification function,
entmod is used. Type the
following expression and the
drawing database is updated.

(entmod entitylist)

 Figure 8.14 � Use the Entmod Function

Practice typing the following examples of the entmod function at the command line of
AutoCAD.

Function Name Description

entmod Entity Modification
Updates the drawing
database with the new entity
list

Examples
Updates the drawing
database with the new
entity list

(entmod entitylist)

Answer:
((-1 . <Entity name: 7ef60e98>) (0 . "MTEXT") (330 . <Entity name: 7ef60cf8>)
(5 . "8B") (100 . "AcDbEntity") (67 . 0) (410 . "Model") (8 . "0") (100 .
"AcDbMText") (10 8.64868 13.9756 0.0) (40 . 0.2) (41 . 6.75825) (71 . 1) (72 .
5) (10 2.0 3.5 0.0) (7 . "Standard") (210 0.0 0.0 1.0) (11 1.0 0.0 0.0) (42 .
0.733333) (43 . 0.2) (50 . 0.0) (73 . 1) (44 . 1.0))

 8-15

Finishing the Loop and Ending the Program

The next expression we will
place in the code will add
one to the variable named
counter. We will use the 1+
function to add 1 to the 0 in
the first loop of the running
program, so the variable
named counter will now be
1. Then we save the number
to the same variable named
counter.

 Figure 8.15 � Add one to the Counter with 1+

Type the following expression in the while loop.

(setq counter (1+ counter))

Now we can add the final parenthesis to the end of the while loop under the last expression.

To end the program, we will
need to place a parenthesis at
the end of the code to close
the defun c:ct function.
Type the following code.

;;; end the program

(gc)
(princ)
)

 Figure 8.16 � Erase Selection Sets with Garbage Collection

But before the very last
parenthesis, the garbage
collection function gc is
entered, so the selection sets
stored in the memory are
erased. If we continue to
accumulate selection sets
indefinitely then we will run
out of storage space.

 Figure 8.17 � End the Program

 8-16

Then we write the princ function to cut out any erroneous data from printing on the command
line when the program is complete.

Loading and Running the Changetext Program

Now that the program is finished, we
need to double check our typing with
the text in this manual and then save
our program to our folder named
�Visual AutoLISP Programs�.

Make sure the Look in list box is
displaying the Visual LISP Programs
folder and then select the program
�Changetext� and press the Load
button. At the bottom � left corner of
the Load / Unload Applications
window you will see a small text
display that was blank initially but
now displays the text as shown in
Figure 8.18,

�Changetext.LSP successfully loaded�

 Figure 8.18 � Load the Changetext Program

After noting that the program is
loaded, press the Close button and
now when you are in the AutoCAD
program, an AutoCAD message
window appears in the middle of the
graphics display stating:
�Changetext.lsp � copyright 1997 by
charles robbins. Type ct to start�
Press the OK button if you agree with
the message.

 Figure 8.19 � The AutoCAD Message

 8-17

In the AutoCAD file, place some text
on the graphical display as shown in
Figure 8.18 using the Mtext, Dtext or
Text command. The Changetext LISP
program will work with text strings
made with any AutoCAD command.

 Figure 8.20 � Some Text on the AutoCAD Display

Figure 8.21 � Select Any of the Text Strings Figure 8.22 � Type the New Text

Type ct to start the program and select three separate text strings. Enter to exit the selection set
being made by the ssget function.

The three text strings will change
to the new text. Enter or type ct to
repeat the program to change more
text. In the Appendix following
this chapter, write modifications of
this code to match text, or count
items. There are endless types of
small subroutines we can write
using the knowledge we have
gained in this chapter.

 Figure 8.23 � Type in the Replacement Text

 8-18

Written below is the entire Changetext.LSP code for your benefit.

;;; changetext.lsp

;;; a program that matches text to a source text selected
;;; copyright 1997 by charles robbins

;;; Charles Robbins provides this code for your use. Use the code
;;; to your benefit and at your own risk. Charles Robbins does not
;;; warrant that the code will work error free in your application.

(alert "changetext.lsp -copyright 1997 by charles robbins. Type ct to start")

;;; start program

(defun c:ct (/)

;;; select text

(print "Select the text to change. ")
(setq ss1 (ssget))

;;; ask questions

(setq textstring (getstring T "\nType the new text. "))

;;; change text
(setq qty (sslength ss1)) ; quantity of target text
(setq counter 0) ; set counter to 0
(while (< counter qty) ; loop runs up to qty
 (setq entitylist (entget (ssname ss1 counter))) ; acquires text database
 (setq oldtext (assoc 1 entitylist)) ; acquires old text
 (setq newtext (cons 1 textstring)) ; make new source text string
 (setq entitylist (subst newtext oldtext entitylist)) ; substitutes old with new text
 (entmod entitylist) ; drawing database updated
 (setq counter (1+ counter)) ; add one to counter
)

;;; end of program

(gc) ; removes selection sets from memory
(princ)
)

