## Subtracting Fractions

When you are adding two fractions that do not have a common denominator and you cannot easy change one of the fractions to the other's denominator, follow these steps on this problem:
$\frac{4}{7}-\frac{2}{5}$

The common denominator for the above problem is $7 \times 5=35$. We arrive at this number by multiplying the denominator of the $1^{\text {st }}$ fraction (7) and the denominator of the $2^{\text {nd }}$ fraction (5).

Write down the new problem as:
$35 \quad 35$
To find the denominator, for the $1^{\text {st }}$ fraction, write:
$\frac{4}{7}=\frac{}{35}$
Now 7 times what number equals 35 ? Five, exactly! Now, whatever you multiply on the bottom, go ahead and multiply on the top. So $4 \times 5=20$ as you can see below.
$\frac{4}{7} \times \frac{5}{5}=\frac{20}{35}$
To find the denominator, for the $2^{\text {nd }}$ fraction, write:
$\frac{2}{5}=\frac{}{35}$
At this time, 5 times what number equals 35 ? Seven, yes! Now, whatever you multiply on the bottom, go ahead and multiply on the top. So $2 \times 7=14$ as you can see below.
$\frac{2}{5} \times \frac{7}{7}=\frac{14}{35}$
Place the new numerators over the denominators on your paper and now you solve the problem.
$\frac{20}{35}-\frac{14}{35}=\frac{6}{35}$
$20-14=6$ as the denominator stays as 35 . The answer is $\frac{6}{35}$.

Solve the following 10 subtraction problems:
$\frac{1}{2}-\frac{1}{5}$
$\frac{3}{4}-\frac{1}{3}$
$\frac{9}{10}-\frac{3}{4}$
$\frac{7}{8}-\frac{2}{5}$

$$
\frac{4}{9}-\frac{1}{5}
$$

$$
\frac{2}{7}-\frac{3}{12}
$$

$$
\frac{6}{7}-\frac{2}{3}
$$

$$
\frac{7}{12}-\frac{2}{5}
$$

$$
\frac{1}{2}-\frac{3}{10}
$$

$$
\frac{4}{5}-\frac{3}{4}
$$

