Appendix

Drawing an
Integrated Circuit Chip

In this chapter, you will learn how to use the following VBA functions to
World Class standards:

Beginning a New Visual Basic Application

Opening the Visual Basic Editor in AutoCAD

Laying Out a User Input Form in Visual Basic

Creating and Inserting an Image into a Form in Visual Basic
Insert a Label into a Form

Insert a Textbox into a Form

Insert Command Buttons into a Form

Adding a Copyright Statement to a Form

Adding Comments in Visual Basic to Communicate the Copyright
Declaring Variables in a Program with the Dimension Statement
Setting Variables in a Program

Assigning Values to the Variables

Inputting the Code to Draw in Visual Basic

Automatically Selecting and Arraying Drawing Entities
Resetting the Data with the cmdClear Command Button

Exiting the Program with the cmdExit Command Button
Exiting the Program with the cmdExit Command Button
Executing a Subroutine with the cmdPickPoint Command Button
Executing a Subroutine with the cmdDraw Command Button
Inserting a Module into a Visual Basic Application

Running the Program

C-1

Beginning a New Visual Basic Application

In this chapter, we will continue to learn how to use the Visual Basic Application (VBA)
program to create a form and then to generate a drawing automatically. We reiterate many
elements of the previous lesson, but now we have the capability to add lines, circles and arcs in
AutoCAD Model Space. Eventually in following chapters, we add text and dimensions, placing
entities on specific layers, having multiple views and soon we will be completing entire
drawings in seconds.

At the beginning of every chapter, we will start a new Visual Basic Application project, use a
sketch to determine the extent of what the program will do, create the form and then write the
code. Once the code is finished, we will run the program and an orthographic drawing will
appear on the graphical display.

Startingpoint Starting

Pick | X[| Point D -vidin
Starting | vy | |
Point o :I—L
Z 0.10
]
Pin Width[] m
Number of Pins |:| u

Draw r Clear Exit :\

| C Chip Drawer - Copyright (c) 2009 by Charles Rabhins. All Rights Reserved

J

Figure C.1 — Rough Sketch of the Integrated Circuit Chip Form

Remember, that all programming projects begin with one or more sketches, with one portraying
the part, detail, or assembly and the other being the user input form. In this Visual Basic
Project, Integrated Circuit Chip, we will be running a user input form inside the AutoCAD
application, so we need to sketch the structure of this special dialogue box. We will name the
Input form, Integrated Circuit Chip. We will place five textboxes on the left side of the form
to input the starting point, the pin width and the number of pins. On the right side of the form,
we will place an image of the chip. We will have three command buttons, Draw, Clear and
Exit. On the bottom of the form, we will write the copyright statement using another label. On
this presentation, we can help ourselves by being as accurate as possible, by displaying sizes,
fonts, colors and any other specific details which will enable us to quickly create the form.
From the beginning of inserting the form into the project, we need to refer to our sketch. The
sketch of the form is shown in Figure C.1.

C-2

Remember, we should train new programmers initially in the art of form building. When using
the editor, we insert and size the form, and selecting the Controls Toolbox, we will place all the
various input tools and properly label them. Whenever we place an input tool, the properties
window will display a list of every attribute associated with the tool, and we will take every
effort to arrange the tool by performing such actions as naming, labeling and sizing the visual
input device.

Opening the Visual Basic Editor in AutoCAD

Opening the Visual Basic Editor in AutoCAD is essential to creating the program to automate
the drawing process. In this version of the World Class CAD — Visual Basic Applications for
AutoCAD, we are using AutoCAD 2009, but we just finished using all the programs in this text
with a group programming in AutoCAD 2002. Their drawings were automatically made just as
efficiently as if they were using the most recent version of the Autodesk software.

File

Palettes

Edit Toolbars 3 o
View E Command Line Ciri+2 o
Insert Clean Screen Ctrl+0 a
Format A‘E,: Spelling =
Tools » ¥ Quick Select...
Draw [Draw Order
Dimension [Inguiry
Modify =% Update Fields
window 5 EBlock Editer
Help ¥ref and Black In-place Editing
Express Data Extraction...

Data Links

Action Recorder
Load Application...
BH Run Script...

F Macro
[Macros... Ale+FE
@rj Recent Documents EE% Load Project...
Open Documents VBA Manager...
& Recant Actions [Visual Basic Editor Alt+F11 | o

Visual Basic Editor [Alt+F11)

Displays the Visuzl Basic Editor

i gt VBAIDE

‘ [Z] Press F1 for more help
e

Figure C.2 — Launching the Visual Basic Editor

Select Tools on the AutoCAD main menu; pick Macro and then choose the Visual Basic Editor.
Look to the right of the phrase, Visual Basic Editor and the shortcut keys Alt — F11 is noted.
For quick launching of the editor, press Alt — F11

The Visual Basic Editor will appear on the computer desktop as a new program application.
Looking down on the computer’s Taskbar, we can see the AutoCAD and Microsoft Visual
Basic Editor program tabs. Just single click either program tab to switch between any
applications. However, if we close the AutoCAD drawing, unlike a stand alone version of
Visual Basic, the Visual Basic Editor will also close.

For those individuals with
previous Visual Basic experience,
the Visual Basic Editor in
AutoCAD has the same layout as
in other VB programs. The Menu
Bar contains tools for our use as
well as the four toolbars shown in
Figure C.4, which are Standard,
Debug, Edit and Userform.
Presently, only the Standard
toolbar is showing. On the left side
of the workspace is the Project
menu, which shows the files
pertaining to this project. Below
the Project menu is the Properties
pane. If we remember the
Properties tool in AutoCAD, using
this device will be simple.

+ Microsoft Visual Basic - Global1

Project - ACADProject x|
:

File Edit Wiew Insert Format Debug Run Tools Add-Ins Window Help

iMigE-H s BERM o, g a | BEHEE2 0

Properties x|

= %} ACADProject (Globall)
=5 AutoCaD Objects
- [E® ThisDrawing

v

Alphabetic | Categorized |

Figure C.3 — The Visual Basic Editor

Figure C.4 — Toolbars in the Visual Basic Editor

With the Visual Basic Editor open, select File on the Menu Bar and select Save Project.
Remember, we have a folder on either the desktop or in the My Documents folder called “VBA
Programs”. Save the project with the filename “IC_chip”. The file has an extension called dvb
which means DCL and Visual Basic programs as shown in Figure C.5.

Save As

Savein: | | WEA Programs

My Documents

= ljﬂimages
Al Hello world
Metwark, Magic Resistor Sizing
Folders
Recent
€
Deskiop

File name:

My Computer | Save as twpe:

(IC_chip

¥

[Save]

| Project [dvh)

- |

[Cancel]

Figure C.5 — Saving the Integrated Circuit Chip Program

Laying Out a User Input Form in Visual Basic

Now that we have an idea of what
the dialogue box in our program
will look like, select the Insert
UserForm button on the Standard
toolbar to insert a new form as
shown in Figure C.6.
Instantaneously, the once grey
work area is changed to contain
our UserForml. A Form folder
with Userforml is now in the
Project menu and the Properties
pane contains the attributes
associated with UserForml. (See
Figure C.7)

< Microsoft Visual Basic - C:\Documents and Settings

File Edit “iew

Insert | Format Debug Run Tools

» o1 om B

M aE-H

P E |lserFormi

Eal ==

g&; Module

= &% ACADProjec
=5 AutoCal

m Class Module

B2 ThisDr

Figure C.6 — Inserting a User Form

Change the name of the user form to frmICchip. We use the frm prefix in front of all of the
form names in Visual Basic. Change the background of the form to light blue by setting the
BackColor in the Properties Pane on the left side of the Visual Basic Application window to

“&HB80000013&”.

C-5

% File Edit ‘iew Insert Format Debug Run Tools Add-Ins window Help

»on mbl HEY (2) i

E - Integrated Circuit Drawing,

= & ACADProject (C:\Documents and Setti SELAEL A B G S CR R B D S C B DO DU S L B D B

E] & ALItDCﬁ\D Objects i e e e A e e e e e e e e e e e e e e e e
ThisDrawing

=5 Farms
-E8 frmICchip v
& | &
Propetties - frmICchip [X] GRS e s L
| femICchip UserForm b S S S SR

| Alphabetic ECategorizeé_ P

||l Mame) frmICchip ~ R R L

BackColor [&H&000001 36 3 i AR B e AR

EorderColor W HE000001 25 i S L LR

Eorderstyle 0 - fmBorderStyleNone i SE e SRR e e S
ety Cr it Do e

Cycle 0 - FmCycleallForms

DrawBUfFer 32000

Enabled True

Font: Tahoma

ForeColor W 3HE000001 26 i SE e SRR e e S

Height 330 i AR B e AR

HelpContextID 0 i S L LR

keepscrollBarsyisible |3 - fmcrolBarsBath i SE e SRR e e S

Left 0

Mouselcon (Mone)

Figure C.7 — Designing the Integrated Circuit Chip Form in Visual Basic

Next, we will Change the Caption [T & Microsart Fisual Basic - C:\scuments and SettingsWiladeskipi¥II Frograms Stamping with 4 hales.dvh - [frmst

the Properties pane to Integrated | g% 5 ™ o e e e o e e

Circuit Drawing to agree with the
sketch in Figure C.8. GO ahead and | - s acaserees ic: poeumments snd s
change the form in two other | = enee
aspects, Height and Width. P T —

Alphabetic — ,_,_._F,-;I 1 I
(Name) frmICcip frmst A UserForm 3

BackColor | &H80000013& R

Caption Integrated Circuit Drawing | | s D i

Height 300 e e

Width 470 PR o i e - j

Figure C.8 — Setting the Caption and other Properties

The form will change in size to the height and width measurement. The background color will
change to a light blue. There are many more attributes in the Properties pane that we will use on
future projects.

In previous chapters, we set the Font and Font size for the labels, textboxes and command
buttons after creating those specific interfaces. If we set the Font to Tahoma and the Font size to
14 on the form, then all of the labels, textboxes and command buttons that we insert from the
Control Toolbox will already be set to those attributes.

C-6

On the left side of the Visual Basic

Editor, locate the property that Alphabetic | Categarized

controls the font and font size in (Mame) FrnPlatew_dholes_arcs &
the Properties window. When BackCalar L] aHs00000138
highligting the row for Font, & S
small command button with three Caption Plake with 4 holes and arcs
small dots appears to the right of Cycle 0 - fmCyclealForms

the default font name of Tahoma. DicEuiTer 2 L

Click on the three dotted button to e s .
open the Visual Basic Font ForeColar W &Ha00000126
window.

Figure C.9 — Changing the Font to Tahoma

We will select the Tahoma font, [?)X]

Regular font style and 14 size for

this project to agree with the initial | 2% attietie i

sketch if the user input form.
When we adjust the attributes for % Techric 2 'M 16 A
the label, these changes do not | % rocpiciie Bl Italic 20

alter globally for the other objects L =

on the form. If we wish to () Trebuchet MS v %’/ ¥

underline the text or phrase in the o S

label, add a check to the Underline , ’

checkbox in the Effects section of Dsmhen_m AaBbYyZz

the Font window. When we finish | 2

making changes to the font Sl

property, select the OK command Westem v

button to return to the work area.

Figure C.10 — The Font Window in Visual Basic

Creating and Inserting an Image into a Form in Visual Basic

Different from the last chapter, this form will have a picture of the part that we will create
automatically, so we need to make a drawing of part in AutoCAD. Dimension the drawing as
we do in any other drawing, but we will use the Edit Text tool to remove the actual dimension
and write in the word that matched the textbox label. In Figure C.11, we show dimensions that
associate the Pin Width, Number of Pins and Startingpoint textboxes with the image. When the
drawing is finished, we need to save the drawing as an image file. Use the Saveimg command
to save file on the VBA Programs folder. Create a folder named Images in the VBA Programs
folder and save the file as the same name as the program for matching purposes, ic_chip. We
saved the file as a Bitmap with a width of 340 pixels and a height of 200 pixels.

Starting Pin Width
Foint
0 S :I_*_
A C B
& i |
& 7

Figure C.11 — Creating the Integrated Circuit Chip Form Image in AutoCAD

On the control toolbox, select the Image tool
and then draw a rectangular box on the form in
the upper right corner as shown in Figure
C.13. After outlining the size of the image, we
will direct the program to the folder and
filename of the digital image. In the Properties
— Image pane, select the attribute named
Picture. With the mouse, select the three dot
box in the empty cell to the right of Picture.
The Load Picture window appears on the
screen. Go to the VBA Programs folder and
then the Images folder. Select the file, ic_chip
and it will appear in the picture frame.

&l

Toolbox

Controls l

h A abl
-
o YElEct Objects
==]
3 =

Figure C.12 — The Control Toolbox

In the Properties pane set the image name to imgChip, the width to 340 and the height to 200.
The image will finally appear as shown in Figure C.14.

C-8

% File Edit “iew Insert Format Debug Run Tools Add-Ins Window Help

mMia-d) » o1 om b BEFY B il

Project - ACADProject

.

=] @ ACADProject {C:'Documents and Setti -
(=427 AutaCAD Objects
ThisDrawing |3
(=45 Farms
-8 FrmICchip

< | =
Properties - Imagel [x]
|Imagel Image v|

Alphabetic | Categarized |

(Mame) Imagel

AukoSize False

EackColor [] &Hs000000Fs:

Backstyle 1 - fmBackstyleOpague

EorderCalar W HE00000068:

Borderstyle 1 - fmBorderstyleSingle] .
ControlTipText Look in: | 3 images
Enabled True L‘ﬂ pr——

Height 156

Left 195 .

Mouselcon (Mone)

MousePoinker |0 - FrMousePointerDefaulk

EETTR) =

Ficturealignment. |2 - FmPicturedlignmentCenter

FictureSizeMode |0 - fmPictureSizeModeClip

FictureTiling False

SpecialEffect 0 - fm3pecialEffeckFlat . : - .

o File: name: ||c:_c:h|p | [Open]
Top 12 . 2 . n
Vicible e Files af type: |AII Ficture Files v| [Cancel]

Figure C.13 — Placing an Image on the Form

Integrated Circuit Drawing

Starting

Bt Fin ¥Width

Figure C.14 — Placing an Image on the Form

C-9

Inserting a Label into a Form

A good form is easy to figure out by the user, so when we are attempting to provide information
on the window that will run in AutoCAD; we add labels to textboxes to explain our intent. Press
the Label (A) button on the Control Toolbar to add a label. To size the label area, click on the
upper left area of the form and hold down on the left mouse button, draw the dotted label box as

shown in the sketch.

When the first label is done, the
background color of the label
matches the background color of
the form. In many cases that effect
is visually pleasing to the eye,
versus introducing another color.
Both color and shape will direct
the user in completing the form
along with the explanation we
place on the window to guide the
designer in using the automated
programs. Use colors and shape
strategically to communicate well.

Integrated Circuit Drawing H.

e ot Qp ottoctririiiciis

........ C iStartn int o = |
-~ Startingpoint &

Figure C.15 — The Finished Label on the Form

For the first label, set the name as IblStartingpoint and the caption as Startingpoint. The width
of the textbox is 100 and the height is 24. For labels on the top side of the textbox, set the
TextAlign attribute to center justification.

Inserting a Textbox into a Form

A textbox is used so that a user of
the computer program can input
data in the form of words, numbers
or a mixture of both. Press the
TextBox (ab) button on the
Control Toolbar to add a textbox.
To size the label area, click on the
upper left area of the form and
hold down on the left mouse
button, draw the dotted textbox as
shown in Figure C.16.

Integrated Circuil Drewing

Startingpoint =

By Starting _ Pir Width

:r_fl :_1, Fairt "\\

'I']""El""ﬂ LY I
Y- pb—L
¢ y 0.10

i g p

i = P

Figure C.16 — Placing a TextBox on the Form

C-10

We will name the TextBox using
the three letter prefix followed by
the name or phrase of the tool. For

our first textbox, the name is
IXtSpX.

Alphabetic

(Name) IxXtSpX

Height 24

Width 60

We place a Label using a common
Visual Basic naming convention
IbISpX just to the left of the
Textbox. The Caption for the
Label will be X. On all of the
labels that are just to the left of the
Textboxes, we will align the text
to the right by setting the
TextAlign property to right align.

Properties - ExtSp¥]

|EXESPX TextBox

Iz

Alphabetic :_l;ategcurized__

Il (Mame)

: AutoSize
| |autoTab
| |[Butowordselect

| BackiZolar

| Backstyle

[BorderColor

[Borderakyle

| [controlsource

| . ControlTipText

| DragBehavior

[Enabled

| [EnterFigldBhavior
EnterkeyvEehavior
[Font

| [ForeCalar

| |Height

[HelpContextID

| |HideSelection

| [MEMade

| InteqralHeight

| |Let

| |Locked

[MaxLength

[Mouselcon

| MousePaointer
[Putine

bk Sp]

False

False

True

[] aHg0000005%,

1 - FmBackstyleOpaque
B =Hs00000068

0 - fmBorderstyleione

||

0 - FrDragBehaviorDisabled
True

0 - fmEnterFieldBehaviorseleck:
False

Tahoma

B =H=00000053

24

0

True

0 - FrIMEModemoControl
True

120

False

0

(Mone)

0 - FrMousePoinkerDefault

False Bl

Figure C.17 — Changing the (Name) to txtName

We will add another TextBox
named txtSpY under the first one
and the Label to the left of the
textbox is called IbISpY. The
Caption for the Label will be Y.

We will add yet another TextBox
named txtSpZ under the first one
and the Label to the left of the
textbox is called IblSpZ. The
Caption for the Label will be Z.

Integrated Cincuit Drmwing

Startingpoint
X |

. .
- T

Slarting | kA
Paint —-\\ ——TPM Width
‘ 1

" —

Figure C.18 — Adding the Y and Z Textboxes

C-11

We will add two more textboxes
named txtPinWidth and
txtNumber under the X, Y and Z
textboxes. The labels to the left of
the textbox are called IblPin
Width and IbINumber. The
Captions for the Labels are shown
in Figure C.19.

Starting
Baint ’———'» Fin Width

Figure C.19 — Adding Two More Textboxes

Inserting a Command Buttons into a Form

A command button is used so that
a user will execute the application.
Press the Command button on the
Control Toolbar to add a command
button. To size the label area, click
on the upper left area of the form
and hold down on the left mouse
button, draw the command button
as shown in Figure C.20.

Slarting
Paint ‘\’:—T Fin Width

o]
. _]'JIEJ
[o]
O M

Figure C.20 — Insert a Command Button onto a Form

C-12

We will name the command button
using the name is cmdDraw.

Alphabetic

(Name) cmdDraw

Caption Draw

Font Tahoma

Height 30

Width 72

The font we want for the
Command Button is 18 point,

Tahoma. When highlighting the
row for Font, a small command
button with three small dots
appears to the right of the font
name of Arial. Click on the three
dotted button to open the Visual
Basic Font window. Make the
changes as we did before and press
OK to save the property.

Add a second Command button;
named cmdClear is for clearing the
Starting point’s X, Y, Z
coordinates, Pin Width and
Number of Pins textboxes. The
third command button is to exit the
program. When the user presses
the Exit command button, the
application closes and full control
of the manual AutoCAD program
returns to the user. Notice the
equal spacing between the
command buttons gives a visually
friendly appearance.

EcmdDraw CammandButton
Alphabetic | Categorized
{Mame) crmdDraw -
Accelerakor [
AutoSize False
BackColar [1 aHa000000Fs.
Backstyle 1 - FmBackStyledpaque
Zancel False
Capkion Doraw
CantrolTipText
Defaulk False
Enabled True
Font Tahoma
FarecColor B =Hz000001 28
Height 30
HelpContextID 0
Left 195
Locked False
Mouseloon (Mone)
MaousePointer 0 - FrfMousePointerDefaulk
Picture (Mone)
PicturePasition 7 - FmPicturePositionAboveCen
TabInde:x 11
TabStop True
Tag
TakeFocusOnClick, True

Figure C.21 — Changing the (Name) to cmdDraw

Startingpoint =
ree e Starting -
x Paint —\1\ Fin Width
il R 0.10
2 f
Pin Width ¢ g
Draw [Clear Exit [

Figure C.22 — Insert Two More Command Buttons

C-13

The fourth command button is

Pick Point, which we will name e

cmdPickPoint. We draw the button ~]| Steng z Pin Width

as shown in figure C.23 and after Pick x| . \ |

typing Pick for the caption, press Starting | v | = T

Shift Enter and type Point on the 23 z| i :
second line. Center the text. When -+) :
we code for this command button, Pin Width ' :

we will allow the user to select a Number of Ping| i1
point on the graphical display and i Draw Clear [Exit [
the X, Y and Z coordinates will

appear in their specific textboxes.

Figure C.23 — Insert the Fourth Command Button

Adding a Copyright Statement to a Form

At the beginning of a new program, we will expect to see an explanation or any special
instructions in the form of comments such as copyright, permissions or other legal notices to
inform programmers what are the rules dealing with running the code. Comments at the
opening of the code could help an individual determine whether the program is right for their
application or is legal to use. The message box is a great tool when properly utilized to inform

Finish the form with the following
copyright information.

Starting
Foint

IC Chip Drawer - Copyright (c) 2009
by Charles Robbins. All Rights
Reserved.

If there are special rules or
instructions that the user needs to
know, place that information on
the bottom of the form.

Draw Clear Exit

I€ Chip Craver - Copyright () 2008 by Charles Robbins. All Rights Reserved.

Figure C.24 — Adding a Copyright Statement

Now that the form is complete, we will begin to write the code that actually interfaces the
content of the form using logic and computations to draw the integrated circuit chip in the
AutoCAD graphical display. We will begin the program with comments and place addition
phrases throughout the program to assist ourselves or others in the future when modifying the
code.

C-14

Adding Comments in Visual Basic to Communicate the Copyright

The comments we placed in the first three lines of the program will inform the individual
opening and reading the code, but those user that may run the application without checking, the
label on the bottom of the form with the copyright information is a great tool to alert the client
to the rules of the program and what will the application do.

To begin the actual coding of the program, double click on the Draw command button to enter
the programming list. At the top of the program and before the line of code with Sub
DrawlCchip (), place the following comments with the single quote (*) character. Remember,
the single quote character (*) will precede a comment and when the code is compiled, comments
are ignored.

Type the following line of code:

Sub DrawlCchip ()

'IC Chip Drawer - Copyright (c) 2009 by Charles Robbins. All Rights Reserved.
"This program will draw the top view of an integrated circuit after prompting
'for the pin width, the number of pins and the starting point.

||[General]| :| ||[Declaratic:rns]| W

'IC Chip Drawer - Copyright (o) 2009 by Charles Robbins. All FRights Reserwved.
'This program will draw the top view of an integrated circuit after prompting
'for the pin width, the number of pins and the startihg point.

Figure C.25 — Adding Comments into the Code

Declaring Variables in a Program with the Dimension Statement

When we are going to use a number, text string or object that may change throughout the life of
the code, we create a variable to hold the value of that changing entity. In Visual Basic, the
dimension or dim statement is one of the ways to declare a variable at the script of procedure
level. The other two ways are the Private and Public statements, which we will use in later
chapters.

C-15

Pa PI'IS P

F10 Fg I F& F5 ‘
STARTINGPOINT P14

s oy ST 010

R0.02 i
@0.02 5 ‘1 5

HEIGHT 004 —= |~ |

i
0.10

R

! 0.04
J P P2 *
0.02 - PIN WIDTH —~

Figure C.26 — Identifying the Variables for the Integrated Circuit Chip Program
Type the following lines of code after the comment.
‘assign variables

Dim ObjArc As AcadArc

Dim ObjCircle As AcadCircle

Dim ObjLine As AcadLine

Dim ObjSs1 As AcadSelectionSet
Dim ObjArrayedObject As AcadEntity
Dim ObjDrawingObject As AcadEntity
Dim Startingpoint(0 To 2) As Double
Dim P1(0 To 2) As Double

Dim P2(0 To 2) As Double

Dim P3(0 To 2) As Double

Dim P4(0 To 2) As Double

Dim P5(0 To 2) As Double

Dim P6(0 To 2) As Double

Dim P7(0 To 2) As Double

Dim P8(0 To 2) As Double

Dim P9(0 To 2) As Double

Dim P10(0 To 2) As Double

Dim P11(0 To 2) As Double

Dim P12(0 To 2) As Double

Dim P13(0 To 2) As Double

Dim P14(0 To 2) As Double

C-16

Dim PinWidth As Double
Dim Number As Double
Dim Height As Double
Dim PW As Double

In our program, we will declare a variable to enable us to draw circles, arcs and lines, a variable
for each vertex and a variable for the pin width, number of pins, height and pw. PW is the
variable for the number of rows in the array. As we can see below, the made up name
CircleObject is an AutoCAD Circle by definition and the contrived name LineObject is a line.
The ArcObject is an AutoCAD Arc.

The vertices are declared as double integers (As Double) with an array of zero to two (0 to 2).
The vertex StartingPoint(0) represents the X coordinate, the StartingPoint(1) represents the Y
coordinate and StartingPoint(2) represents the Z coordinate. Some may think that it is a waste of
time to involve the Z-axis in a two dimension drawing, but we will incorporate the Z coordinate
for designers that work in all three dimensions. For everyone else, we will just enter zero (0) in
the Z coordinate textbox.

We will declare points P1 through P14 for the vertices in the drawing in Figure C.26. Lastly, we
declare PinWidth, Number, Height and PW as double integers (As Double).

C-17

{General) w | 5.DrawICchip

VIG Chip-rDEawer. = Copy¥right (el -2003: by Chatles Robbhitis. JAFl Rights Resetyved:
"This programm will ‘dEaw Che top view of an ihtegrated citcuit after promptihg
'for the pin width, the nuwber of pins and the starting point.

Public Sub DrawICchipi)
Ydgsign wariables

Dim obijline 4=z AcadLine

Dim objire As Acadirc

Dim objCircle Az AcadCircle

Dim obj3sl As Acadlelectioniet

Dim objirrayedChiject As AcadEntity
Dim objlDrawvingChject As AcadEntity

Dim Startingpoint (0 To 21 As Double

Diwm P1(0 To 2) As Douhkle
Diw P2 (0 To 2) As Doukle
Dimw P3 (0 To 2) A=z Doukle
Diw P3(0 To 2) Ais Doukle
Diw PS5(0 To 2) Ais Doukle
Diw PeE(0 To 2) As Doukle
Dim P7(0 To 2) Ais Double
Diiwm PE(O0 To 2) A=z Douhle
Dimw P9(0 To 2) As Doukle
Diw P10O{0O To 2) iz Double
Diw P11(0 To 2) Ais Double
Dimw P12 (0 To 2) is Double
Diw P13 (0 To 2) Ais Double
Dimw P14(0 To 2) Ais Double
Dim PinWidth As Double
Dim Nutber As Double

Dim Height As Double

Diw PW Az Double

Figure C.27 — Declaring Variables with Dim Statements

When selecting variable names, they should be a word or a phrase without spaces that
represents the value that the variable contains. If we want to hold a value of one’s date of birth,
we can call the variable, DateofBirth. The keywords Date and Birth are in sentence case with
the first letter capitalized. There are no spaces in the name. Some programmers use the
underscore character () to separate words in phrases. This is acceptable, but a double
underscore (__) can cause errors if we do not detect the repeated character.

Assigning Values to the Variables

After we declare the variables and before we start drawing, we will assign the variables from
the input the user types in the textboxes on the launched user form and then assign values to
each of the vertices in the set of construction points.

C-18

Type the following code right below the declared variables.

'set variables

Startingpoint(0) = txtSpX.Text
Startingpoint(1) = txtSpY.Text
Startingpoint(2) = txtSpZ.Text
PinWidth = txtPinWidth.Text
Number = txtNumber.Text

Height = (Number -2)/2*0.1 + 0.08
PW = Number / 2

'point assignments and math

+0.04
+0.04 - Height

Startingpoint
Startingpoint
Startingpoint
Startingpoint
Startingpoint
Startingpoint
Startingpoint
Startingpoint
Startingpoint
Startingpoint
Startingpoint
Startingpoint
Startingpoint

(

E

(0) + PinWidth - 0.04

(

(

(

(

(

(

(

(

(
Startingpoint(

(

(

(

(

(

(

(

(

(

(

(

(

+0.04 - Height

+ |nW|dth 0.04
+ |nW|dth

+ PinWidth
+0.02
Startingpoint
+ PinWidth - 0.04
+0.02

)=

)=

)=

)=

)=

)=

)=

)=

)=

) =

)=

)=

) =

)=

)=

) = Startingpoint
) = Startingpoint
) = Startingpoint
) = Startingpoint(0) + PinWidth - 0.04
) = Startingpoint(1) + 0.04
) = Startingpoint
) = Startingpoint
) = Startingpoint
) = Startingpoint
) = Startingpoint
) = Startingpoint
)=
0
1
2
0
1
2
0

Startingpoint(

+0.04
+0.04

+0.04

1(0
1(1
1(2
2(0
2(1
2(2
3(0
3(1
3(2
4(0
4(1
4(2
5(0

P5(1
5(2
6(0
6(1
6(2
700
7(1
7(2
8(0
8(1
8(2
9(0
91 +0.02
9(2

0
1
2
0
1
2
0
1
2
0
1
2
0
1
2
0
1
2
0
1
2
0
1
2
0
1
2

)
)
)
)
)
)
)
)-0
)
)
)-0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
0
1
2
0
1
2
0

P10(0) = Startingpoint(0)
P10(1) = Startingpoint(1) + 0.02
P10(2) = Startingpoint(2)
P11(0) = Startingpoint(0)
P11(1) = Startingpoint(1) - 0.02
P11(2) = Startingpoint(2)
P12(0) = Startingpoint(0) + 0.04

C-19

P12(1) = Startingpoint(1) - 0.02

P12(2) = Startingpoint(2)

P13(0) = Startingpoint(0) + PinWidth / 2
P13(1) = Startingpoint(1) + 0.04

P13(2) = Startingpoint(2)

P14(0) = Startingpoint(0) + 0.06

P14(1) = Startingpoint(1)

P14(2) = Startingpoint(2)

As we can see below, the first five variables equal the values from the textbox. After that, we
assign each point’s X, Y and Z coordinates a number either from the variable or from a
mathematical calculation that we arrive from the sketch in Figure C.26. We use the variables
PinWidth and Height to measure the distance from one point to another.

Inputting the Code to Draw in Visual Basic

Now we want to enter the code that will actually draw lines, circles and arcs in the AutoCAD
Model Space. We use the Set function to draw a line by typing Set ObjLine and then we tell
the computer that it will draw in Modelspace by adding a line from point P9 to point P10.

Go ahead and type the following comments and drawing code:

‘draw the pins

Set ObjLine = ThisDrawing.ModelSpace.AddLine(P9, P10)
Set ObjLine = ThisDrawing.ModelSpace.AddLine(P10, P11)
Set ObjLine = ThisDrawing.ModelSpace.AddLine(P11, P12)

Set ObjLine = ThisDrawing.ModelSpace.AddLine(P3, P4)
Set ObjLine = ThisDrawing.ModelSpace.AddLine(P4, P5)
Set ObjLine = ThisDrawing.ModelSpace.AddLine(P5, P6)

We draw five more lines from P10 to P11, P11 to P12, P3 to P4, P4 to P5 and finally from P5 to
P6.

Automatically Selecting and Arraying Drawing Entities

We array entities by selecting the object. We zoom all to have all the entities appear in the
graphical display. We delete the TempSS selection set in case a this temporary file is open
from a previous program. Then we create a selection set by using acSelectionSetWindow, P11,
P5 to retrieve all six objects inside the window of those two points. When we array the pins, we

type:
Set objArrayedObject = objDrawingObject.ArrayRectangular(PW, 1, 1, -0.1, 1, 0)

C-20

Where the PW is the number of rows in the array, the 1 is the number of columns in the array,
the next 1 is the number of levels for 3D arrays. Next we input 8 for the distance between rows,
1 for the distance between columns and 1 for the distance between levels. After the array, we
delete the selection set objSs1.

'Array the Pins
ThisDrawing.Application.ZoomAll

On Error Resume Next
ThisDrawing.SelectionSets("TempSS").Delete

Set 0bjSs1 = ThisDrawing.SelectionSets.Add("TempSS*™)
objSs1.Select acSelectionSetWindow, P11, P5

For Each objDrawingObject In objSs1

Set objArrayedObject = objDrawingObject.ArrayRectangular(PW, 1, 1, -0.1, 1, 0)
objArrayedObject.Update

Next

objSs1.Delete

We use the Set function to draw a circle by typing Set ObjArc and then we tell the computer
that it will draw in Modelspace by adding an arc from the center point number 13 with a radius
of 0.02. The arc will draw counterclockwise from the value of pi (3.14159) radians to zero
radians.

‘Draw arc
Set ObjArc = ThisDrawing.ModelSpace.AddArc(P13, 0.02, 3.14159, 0)

We use the Set function to draw a circle by typing Set ObjCircle and then we tell the computer
that it will draw in Modelspace by adding a circle from the center point number 14 with a radius
of 0.01.

‘Draw circle
Set ObjCircle = ThisDrawing.ModelSpace.AddCircle(P14, 0.01)

We end the construction of the integrated circuit chip with the four lines of the chip’s body.

'Draw the lines
Set ObjLine = ThisDrawing.ModelSpace.AddLine(P1, P2)
Set ObjLine = ThisDrawing.ModelSpace.AddLine(P2, P7)
Set ObjLine = ThisDrawing.ModelSpace.AddLine(P7, P8)
Set ObjLine = ThisDrawing.ModelSpace.AddLine(P8, P1)

To end this Visual Basic subroutine, we will type a comment saying so. In the future, this will
be more elaborate, but for now we will just get used to announcing the natural divisions of the
script.

Type the following code:

C-21

‘Unload and End the program
Unload Me
End

End Sub

Resetting the Data with the cmdClear Command Button

To clear the textboxes containing the user input, we will first set the textbox for txtXcoord,
txtXcoord.text property to a “0.00” entry by using the equal sign “=".This makes the property
equal zero as a default. We do this also for the Y and Z coordinates. We will set the textboxes
for txtPinWidth, txtPinWidth.text property to a black entry by using the equal sign “=" and the
null string “”, and this will make that property blank. Notice that after the control object name
the dot (.) separates the suffix which is the name of the property for that object.

Key the following code as a new subroutine Private Sub cmdClear_Click().

Private Sub cmdClear_Click()
‘clear the form

tXtSpx ="

txtSpy ="

txtSpz ="

txtPinWidth ="
End Sub

Exiting the Program with the cmdExit Command Button

To exit this program, we will unload the application and end the program.
Type the following code:

Private Sub cmdExit_Click()
‘unload and end program
Unload Me
End
End Sub

| cmdDraw - | | Click

>|_<

Private Sub cmdExit Click()
'unload and end progratm
Unload He
End
End 3ub

=== »

[

Figure C.28 — Coding the Exit Button

C-22

Executing a Subroutine with the cmdPickPoint Command Button

For the cmdPickPoint button, we will write SelectPoint which is a subroutine to allow the user
to select a point on the graphical display and the X, Y and Z coordinates will be placed in the
appropriate textboxes. A user can now type a starting point manually or has the choice to pick
the initial point with their mouse.

Private Sub cmdPickPoint_Click()
SelectPoint
End Sub

The SelectPoint subroutine starts with hiding the Foundation window and the prompt "Pick a
Start Point: " is written on the command line. Once the single point is selected, the txtSpX
textbox is given the first value of the starting point. After all three txtSP textboxes are filled, the
Foundation window reappears.

Sub SelectPoint()
Me.hide
Dim StartPoint As Variant
StartPoint = ThisDrawing.Utility.GetPoint(, vbCr & "Pick a Start Point: ")
txtSpX = StartPoint(0)
txtSpY = StartPoint(1)
txtSpZ = StartPoint(2)
Me.Show
End Sub

Executing a Subroutine with the cmdDraw Command Button

In this program, we use a subroutine which is executed by the Draw command button, so type
the following code to execute the subroutine, DrawlCchip.

Private Sub cmdDraw_Click()

‘draw the top of the chip
DrawlCchip

End Sub

Private Sub cmdDbraw Click()

'Draw the top of the chip
DrawlICchip

End 3ub

Figure C.29 — Coding the Draw Button

C-23

Written below is the entire program for creating the Integrated Circuit Chip. Next, we will
insert a module to launch the form.

'IC Chip Drawer - Copyright (c) 2009 by Charles Robbins. All Rights Reserved.
"This program will draw the top view of an integrated circuit after prompting
'for the pin width, the number of pins and the starting point.

Sub DrawlICchip()
‘assign variables

Dim ObjArc As AcadArc

Dim ObjCircle As AcadCircle

Dim ObjLine As AcadLine

Dim ObjSs1 As AcadSelectionSet
Dim ObjArrayedObject As AcadEntity
Dim ObjDrawingObject As AcadEntity
Dim Startingpoint(0 To 2) As Double
Dim P1(0 To 2) As Double

Dim P2(0 To 2) As Double

Dim P3(0 To 2) As Double

Dim P4(0 To 2) As Double

Dim P5(0 To 2) As Double

Dim P6(0 To 2) As Double

Dim P7(0 To 2) As Double

Dim P8(0 To 2) As Double

Dim P9(0 To 2) As Double

Dim P10(0 To 2) As Double

Dim P11(0 To 2) As Double

Dim P12(0 To 2) As Double

Dim P13(0 To 2) As Double

Dim P14(0 To 2) As Double

Dim PinWidth As Double

Dim Number As Double

Dim Height As Double

Dim PW As Double

'set variables

Startingpoint(0) = txtSpX.Text
Startingpoint(1) = txtSpY.Text
Startingpoint(2) = txtSpZ.Text
PinWidth = txtPinWidth.Text
Number = txtNumber.Text

Height = (Number - 2)/2*0.1 + 0.08
PW = Number /2

C-24

'point assignments and math

1(0) = Startingpoint(0) + 0.04
1(1) = Startingpoint(1) + 0.04 - Height
1(2) = Startingpoint(2)
2(0) = Startingpoint(0) + PinWidth - 0.04
2(1) = Startingpoint(1) + 0.04 - Height
2(2) = Startingpoint(2)
3(0) = Startingpoint(0) + P |nW|dth 0.04
3(1) = Startingpoint(1) - 0
3(2) = Startingpoint(2)
4(0) = Startingpoint(0) + P |nW|dth
4(1) = Startingpoint(1) - 0
4(2) = Startingpoint(2)
5(0) = Startingpoint(0) + PinWidth
P5(1) = Startingpoint(1) + 0.02
5(2) = Startingpoint(2)
6(0) = Startingpoint(0) + PinWidth - 0.04
6(1) = Startingpoint(1) + 0.02
6(2) = Startingpoint(2)
7(0) = Startingpoint(0) + PinWidth - 0.04
7(1) = Startingpoint(1) + 0.04
7(2) = Startingpoint(2)
8(0) = Startingpoint(0) + 0.04
8(1) = Startingpoint(1) + 0.04
8(2) = Startingpoint(2)
9(0) = Startingpoint(0) + 0.04
9(1) = Startingpoint(1) + 0.02
9(2) = Startingpoint(2)
P10(0) = Startingpoint(0)
P10(1) = Startingpoint(1) + 0.02
P10(2) = Startingpoint(2)
P11(0) = Startingpoint(0)
P11(1) = Startingpoint(1) - 0.02
P11(2) = Startingpoint(2)
P12(0) = Startingpoint(0) + 0
P12(1) = Startingpoint(1) - 0
P12(2) = Startingpoint(2)
P13(0) = Startingpoint(0) + PinWidth / 2
P13(1) = Startingpoint(1) + 0.04
P13(2) = Startingpoint(2)
P14(0) = Startingpoint(0) + 0.06
P14(1) = Startingpoint(1)
P14(2) = Startingpoint(2)

C-25

‘draw the pins

Set ObjLine = ThisDrawing.ModelSpace.AddLine(P9, P10)
Set ObjLine = ThisDrawing.ModelSpace.AddLine(P10, P11)
Set ObjLine = ThisDrawing.ModelSpace.AddLine(P11, P12)

Set ObjLine = ThisDrawing.ModelSpace.AddLine(P3, P4)
Set ObjLine = ThisDrawing.ModelSpace.AddLine(P4, P5)
Set ObjLine = ThisDrawing.ModelSpace.AddLine(P5, P6)

‘Array the Pins
ThisDrawing.Application.ZoomAll

On Error Resume Next
ThisDrawing.SelectionSets("TempSS").Delete

Set objSs1 = ThisDrawing.SelectionSets.Add("TempSS")
objSs1.Select acSelectionSetWindow, P11, P5

For Each objDrawingObject In objSs1

Set objArrayedObject = objDrawingObject.ArrayRectangular(PW, 1, 1, -0.1, 1, 0)
objArrayedObject.Update

Next

objSsl.Delete

‘Draw arc
Set ObjArc = ThisDrawing.ModelSpace.AddArc(P13, 0.02, 3.14159, 0)

'Draw circle
Set ObjCircle = ThisDrawing.ModelSpace.AddCircle(P14, 0.01)

'Draw the lines
Set ObjLine = ThisDrawing.ModelSpace.AddLine(
Set ObjLine = ThisDrawing.ModelSpace.AddLine(
Set ObjLine = ThisDrawing.ModelSpace.AddLine(
Set ObjLine = ThisDrawing.ModelSpace.AddLine(

‘Unload and End the program
Unload Me
End

End Sub

Private Sub cmdExit_Click()
‘unload and end program
Unload Me
End
End Sub

C-26

Private Sub cmdClear_Click()
‘clear the form

txtSpx =""

txtSpy ="

txtSpz ="

txtPinWidth ="
End Sub

Private Sub cmdPickPoint_Click()
SelectPoint
End Sub

Sub SelectPoint()
Me.hide
Dim StartPoint As Variant
StartPoint = ThisDrawing.Utility.GetPoint(, vbCr & "Pick a Start Point: ")
txtSpX = StartPoint(0)
txtSpY = StartPoint(1)
txtSpZ = StartPoint(2)
Me.Show
End Sub

Private Sub cmdDraw_Click()

‘draw the top of the chip
DrawlCchip

End Sub

Inserting a Module into a Visual Basic Application

Insert a Module by selecting Insert on the
Menu Bar and select Module as shown in
Figure C.30. In the Project Menu, double click
on the Module and type the following code.

@ Microsoft Visual Basic - G:\WBA Prog

Sub DrawlCChip ()
‘draw the chip

ICchip.Show
End Sub

afl==l=]

l:l g Mmprnjec ,L"J_ ;lﬂs‘sm
= 45 AutaCAD
ER Thishr

File...

Figure C.30 — Inserting a Module

The line of code, frmICchip.Show will display the form at the beginning of the program.

C-27

Running the Program

After noting that the program is [EEEEESETRIENE

saved, press the F5 to run the Startingpoint s .
Integrated Circuit Chip application. oo it ’-——T—memn
The Integrated Circuit Chip window Pick \d“ —
will appear on the graphical display 5‘;‘;.';""‘:9 il 0 1 010
in AutoCAD as shown in Figure z|0 : 3K
C.31. i 1 :
Pin Width | 0.3 '
Number of Pins | 8
Draw | Clear | Exit |
[Chilp Drawer - Copyright (=) 2009 by Charles Robbires, All Rights Raserved.
Figure C.31 - Launching the Program
Type the following data or X 0
something similar into the textboxes Y 0
and select the Draw Command Z 0
Button to execute the program. Pin Width | 0.3
Number of Pins 8

Figure C.32 — Input Data

A Emmi o A | (s H4) 0 e 5| pjimas w2 Y O30 an
Maniea Al f |nom . |.. - TP AR gy 77T B T a3 I8 ER Wit Havatcn -F:‘ =
Tt . 4o
L Lo 4 Fmate Tation prery ey
= R
L o §
[]o]
- m n
;.
b i
Connand = 00N -

Temcily coomer of wirdow, snter & scales fsctior (nX ox o), o
(411 Coniar Tynanic - Tutente Previcus-Tos leTindow Vb jact] <real tissr =

Commad L] *
i Ty

AL elOleialw]x]o]

Figure C.36 — The Finished Draw

C-28

There are many variations of this Visual Basic Application we can practice and draw many
single view orthographic drawings. While we are practicing with forms, we can learn how to
use variables, make point assignments and draw just about anything we desire. These are skills
that we want to commit to memory.

* World Class CAD Challenge 5-12 * - Write a Visual Basic Application that draws any
integrated circuit lines, circles and arcs by a inputting data into a form. Complete the
program in less than 120 minutes to maintain your World Class ranking.

Continue this drill four times making other shapes and simple orthographic views with
lines and circles, each time completing the Visual Basic Application in less than 120
minutes to maintain your World Class ranking.

C-29

C-30

