Chapter

Writing a Stmple Program
to Draw a Line

In this chapter, you will learn how to use the following VBA functions to
World Class standards:

= Beginning a New Visual Basic Application

* Opening the Visual Basic Editor in AutoCAD

= Laying Out a User Input Form in Visual Basic

= Insert a Label into a Form

* Insert a Textbox into a Form

* Insert Command Buttons into a Form

* Adding a Copyright Statement to a Form

* Adding Comments in Visual Basic to Communicate the Copyright
* Declaring Variables in a Program with the Dimension Statement
= Setting Variables in a Program

= Assigning Values to the Variables

* Inputting the Code to Draw in Visual Basic

* Resetting the Data with the cmdClear Command Button

= Exiting the Program with the cmdExit Command Button

= Exiting the Program with the cmdExit Command Button

* Executing a Subroutine with the cmdDrawLine Command Button
* Inserting a Module into a Visual Basic Application

* Running the Program

3-1

Beginning a New Visual Basic Application

In this chapter, we will learn how to use the Visual Basic Application (VBA) program to first
create a form and then to draw an AutoCAD entity automatically. We reiterate many elements
of the previous lesson, but now we add the capability to add a line in AutoCAD Model Space.
Eventually in following chapters, we will add circle, arcs, text and dimensions, placing entities
on specific layers, having multiple views and soon we will be completing entire drawings in
seconds.

At the beginning of every chapter, we will start a new Visual Basic Application project, use a
sketch to determine the extent of what the program will do, create the form and then write the
code. Once the code is finished, we will run the program and an orthographic drawing will
appear on the graphical display.

Remember, that all programming projects begin with one or more sketches, with one portraying
the part, detail, or assembly and the other being the user input form. In this Visual Basic
Project, Input Line, we will be running a user form inside the AutoCAD application, so we need
to sketch the structure of this special dialogue box. We will name the Input form, Input Line.
We will place six textboxes on the right side of the form to input the starting point and the
ending point. On the left side of the form, we will place labels identifying the starting point and
ending point. We will have three command buttons, Draw Line, Clear and Exit. On the
bottom of the form, we will write the copyright statement using another label. On this
presentation, we can help ourselves by being as accurate as possible, by displaying sizes, fonts,
colors and any other specific details which will enable us to quickly create the form. From the
beginning of inserting the form into the project, we need to refer to our sketch. The sketch of
the form is shown in Figure 3.1.

Remember, we should train new
programmers initially in the art of Input Line
form building. When using the
editor, we insert and size the form, Enterthe X Y. and Z
and selecting the Controls coomdinates for the
Toolbox, we will place all the start of the line
various input tools and properly
label them. Whenever we place an
input tool, the properties window Enter the X, Y, and Z
will display a list of every attribute Zgzrg'fntﬁt:ﬁ:g the
associated with the tool, and we

will take every effort to arrange
the tool by performing such
actions as naming, labeling and Draw Line Clear Exit
sizing the visual input device.

000

Figure 3.1 — Rough Sketch of the Input Line Form

Opening the Visual Basic Editor in AutoCAD

Opening the Visual Basic Editor in AutoCAD is essential to creating the program to automate
the drawing process. In this version of the World Class CAD — Visual Basic Applications for
AutoCAD, we are using AutoCAD 2008, but we just finished using all the programs in this text
with a group programming in AutoCAD 2002. Their drawings were automatically made just as
efficiently as if they were using the most recent version of the Autodesk software.

File Edit View Insert Format WS

Draw Dimension Modify Window Help Express

OWRE 2038 =[O Seding LR HEMESSE @

L | LT Cuick Select, ., BoL vl |

= e aper

=S| v JT Y Draw Order [it
Vs é Iniquiry 4
/; ca %= Update Fields
| Ah 7 Block Ediar
(8] & siref and Block In-place Editing 4

og

T ‘{i} attribute Exbraction...
Ik 22 Properties CTRL+L
@ 0 DesignCenter CTRL+E
€05 Taol Palettes Windaw CTRL+3
~ 8 Sheet Set Manager CTRL+4
| b Info Palette CTRL+S
|y dbConnect CTRL+6
@ O Q farkup Set Manager CTRL+7

“ T A quickcal CTRL+3
= Command Ling CTRL+2

B
ﬁ [/_ Load Application. ..
! rr— Run Script...
. B e ALT+FB
- - AutoLIsp P Load Project...

\If i VBA Manager...
A Display Image 4
Wisual Basic Editor ALT+FLL
& named UCs... =

Figure 3.2 — Launching the Visual Basic Editor

Select Tools on the Menu bar; pick Macro and then choose the Visual Basic Editor. Look to the
right of the phrase, Visual Basic Editor and the shortcut keys Alt — F11 is noted. For quick
launching of the editor, press Alt — F11

The Visual Basic Editor will appear on the computer desktop as a new program application.
Looking down on the computer’s Taskbar, we can see the AutoCAD and Microsoft Visual
Basic Editor program tabs. Just single click either program tab to switch between any
applications. However, if we close the AutoCAD drawing, unlike a stand alone version of
Visual Basic, the Visual Basic Editor will also close.

3-3

For those individuals _with

previous Visual Basic experience, | e edt tew Iset Fomst Detug Fwn Teok adddns Window e
the Visual Basic Editor in |B&-E @6 o) gakd 8550 0
AutoCAD has the same layout as
in other VB programs. The Menu | acaoprogect (Giobaity
Bar contains tools for our use as | = fiwe e
well as the four toolbars shown in

Figure 3.4, which are Standard,
Debug, Edit and Userform.
Presently, only the Standard
toolbar is showing. On the left side
of the workspace is the Project
menu, which shows the files | ¥
pertaining to this project. Below
the Project menu is the Properties

F\Iphabetlc Categnrlzed

pane. If we remember the
Properties tool in AutoCAD, using
this device will be simple.

Figure 3.3 — The Visual Basic Editor

Figure 3.4 — Toolbars in the Visual Basic Editor

With the Visual Basic Editor open, select File on the Menu Bar and select Save Project.
Remember, we have a folder on either the desktop or in the My Documents folder called “VBA
Programs”. Save the project with the filename “Input Line”. The file has an extension called
dvb which means DCL and Visual Basic programs as shown in Figure 3.5.

3-4

Save As

O

Recent

@

Dezkbop

3

My Documents

=

= !

()

o

3 @
=)

=

m

-

by Metwork, Save as type:

Save in; |bVB.-’-‘-. Programs v| @ ?‘ =
File name: | |:,| L Save]
| Project [dvh) v| | cance |

Figure 3.5 — Saving the Input Line Program

Laying Out a User Input Form in Visual Basic

Now that we have an idea of what
the dialogue box in our program
will look like, select the Insert
UserForm button on the Standard
toolbar to insert a new form as
shown in Figure 3.6.
Instantaneously, the once grey
work area is changed to contain
our UserForml. A Form folder
with Userforml is now in the
Project menu and the Properties
pane contains the attributes
associated with UserForml. (See
Figure 3.7)

»
050 al Ha)o < and Se £

5

File Edit \iew | Insert | Format Debug Run Tocls
B =-E »on om B
[1 -

0 CADP E LlserFarm
= W Module

= B: ACADProjec| &%) Class Module

Figure 3.6 — Inserting a User Form

Change the name of the user form to frmInputLine. We use the frm prefix in front of all of the
form names in Visual Basic. Change the background of the form to light blue by setting the
BackColor in the Properties Pane on the left side of the Visual Basic Application window to

“&H80000013&”.

Eile Edit ‘ew Insert Format Debug Run Tools Add-Ins Window Help

™iE-d o o HEER O g
5 @ ACADProject {D:\Documents an & D:\Documents and Settings\Joe\Desktop\VBA Pro..

=55 AukaCAD Objects

I IE® ThisCrawing

C & s Cantrals I
“-F8 UserFarml

KA

V&

=

< Iii |

Properties - UserForm1

UserForm1 UserForm

Alphabetic | Categarized |

ETY2

L]

(Marmne) UserForml ~
E@_D BHE000000 v |
BorderCalor W =H500000128
EiorderStyle 0 - fmBorderStylet
Capkion UserFarrnl

Cycle 0 - FmCycleallFarm:
DrawBuffer 32000 =
Enabled True

Fant Tahaoma

ForeColor W =H500000128
Height 306

HelpContextID 0 =

Figure 3.7 — Designing the Input Line Form in Visual Basic

Next, we will change the Caption 2 @- & youom b N R 0 -
Project - ACADProject x|

in the Properties pane to Input

Line to agree with the sketch in [=& acaoeroect mrpocuments an
. =53 AutoCAD Objects
Figure 3.8. Go ahead and change _ B oo
. (=55 Farms
the form in two other aspects, BB ftputine
Height and Width.
Alphabetic
7 < I | B3
(Name) frmInputLine
BackColor &H80000013& [Fminputiine Ussfom]
Caption Input Line Alphabetic | Categorized |
Helght 3 50 (Name) FrmInputLine A
BackCalor [&:H800000138:
Width 300 BorderColor M &+iz00000123
EorderStyle 0 - FmBorder Stylenl
Input Line
Cyile 0 - FnCycledllFarm:
DrawBuffer 32000 =
Enabled True
Font Tahoma
ForeCalor W :H20000012%
Height 350
HelpContex<tID 1] =
KeepscrolBarsyisible 3 - FmScrollBarsBat|
Left i < it | ¥

Figure 3.8 — Setting the Caption and other Properties

The form will change in size to the height and width measurement. The background color will

change to a light blue. There are many more attributes in the Properties pane that we will use on
future projects.

3-6

Inserting a Label into a Form

A good form is easy to figure out by the user, so when we are attempting to provide information
on the window that will run in AutoCAD; we add labels to textboxes to explain our intent. Press
the Label (A) button on the Control Toolbar to add a label. To size the label area, click on the
upper left area of the form and hold down on the left mouse button, draw the dotted label box as
shown in the sketch.

We will name the Label using a

co on Visual Basic Naming Properties - IbiStartingPoint m

convention where the

. . . IblStartingPoint Label W
programming object is a three _
Alphabetic | Categarized
letter prefix followed by the name
M IblStartingPoint ~
or phrase of the tool. For our first (Hame) Arnaren
. . Acceleratar
label on this form, the name is fkoSize False
IblStartingPoint. BackColor [&HS00000138
Backstyle 1 - FmBackstyleOpague
Alphabetic BorderColor] &HE00000068:
(Name) IblStartingPoint EZLEE:WIE gt;::?f;;‘danai;ftylewone
BackColor &H80000013& ContralTpTast
Caption Type your name: Enabled True
Font Arial Arial =l
FaoreColor B =H=00000123,
On the sketch, the label’s caption Height 30
is “Enter the X, Y, and Z [':F'ECD”temD 2
coordinates for the start of the Mouselcon (None)
line” We will make the font on the MousePointer | 0 - FrMausePaoinkerDefault
14 point, Arial. When highlighting Picture____ {None). .
PickurePosition 7 - FmPicturePositionAboyveCent
the row for FOl’lt, a small command SpecialEffect |0 - FmSpecialEfFectFlat
button with three small dots TabIndex O
appears to the right of the default Ia'ﬁmp False
. aq
font name of Tahoma. Click on the Textalian 1 - fmTextalignLeft v

three dotted button to open the
Visual Basic Font window.

Figure 3.9 — Changing the Font to Arial

3-7

We will select the Arial font,
Regular font style and 12 size for
this project to agree with the initial
sketch if the user input form.
When we adjust the attributes for
the label, these changes do not
alter globally for the other objects
on the form. If we wish to
underline the text or phrase in the
label, add a check to the Underline
checkbox in the Effects section of
the Font window. When we finish
making changes to the font
property, select the OK command
button to return to the work area.

When the first label is done, the
background color of the label
matches the background color of
the form. In many cases that effect
is visually pleasing to the eye,
versus introducing another color.
Both color and shape will direct
the user in completing the form
along with the explanation we
place on the window to guide the
designer in using the automated
programs. Use colors and shape
strategically to communicate well.

Faont: Font style: Size:
& ril] Regular 14 oK
P A A
Arial Black Italic 16 el
O Avial Naraw Bold 18
€} Avial Unicode M5 Bold Italic 20
H BankGothic LEBT 22
H BankGothic Md BT 24
T BATAVIA v 95w
Effects Sample
[5trikeout
[] Underline AaBbeZZ
Script:
|W’estem A |

Figure 3.10 — The Font Window in Visual Basic

: Input Line

Enter the X, Y, and
-+ Z coordinates for
-+ the start of the line

Figure 3.11 — The Finished Label on the Form

3-8

Inserting a Textbox into a Form

A textbox is used so that a user of
the computer program can input
data in the form of words, numbers
or a mixture of both. Press the
TextBox (ab) button on the
Control Toolbar to add a textbox.
To size the textbox area, click on
the upper left area of the form and
hold down on the left mouse
button, draw the dotted textbox as
shown in Figure 3.12.

We will name the TextBox using
the three letter prefix followed by
the name or phrase of the tool. For
our first textbox, the name is
txtStartpointX.

Alphabetic

(Name) txtStartpointX
Height 24

Width 102

The font on the sketch is 14 point,
Arial. When highlighting the row
for Font, a small command button
with three small dots appears to
the right of the default font name
of Tahoma. Click on the three
dotted button to open the Visual
Basic Font window. Make the
changes like we did on the Label
and press OK to save the property.

Figure 3.12 — Placing a TextBox on the Form

Properties - ExtStartpointX m

vl

txtStartpointX TextBox
Alphabetic | Categorized

{Mame)
AutaSize
AukaTab
AutoiordSelect
BackColor
Backstyle
BaorderCalaor
BorderStyle
ZonkrolSource
ConkrolTipTesxt
DragBehayior
Enabled
EnterFieldBehavior
EnterkeyBehavior
Font

ForeColor

Height
HelpCante:xtID
HideSelection
IMEMaode
IntegralHeight
Left

Locked

MaxLength

LxbStartpoints

Falze

Falze

True

[&H=00000058:

1 - fmBackstyleCpague
B =HE00000068:

0 - fmBorderStyleMone

1 - FmDragBehaviorDisabled
True

0 - FrmEnterFieldBehaviorSelectal
Falze

Arial

B =H=0000008E:

24

0

True

0 - frIMEModeMoControl
True

156

Falze

0

w

Figure 3.13 — Changing the (Name) to txtName

3-9

We place a Label using a common Visual Basic naming convention 1bISpX just to the left of
the Textbox. The Caption for the Label will be X. On all of the labels that are just to the left of
the Textboxes, we will align the text to the right by setting the TextAlign property to right
align.

We will add another TextBox
named txtStartpointY under the
first one and the Label to the left
of the textbox is called IbISpY.
The Caption for the Label will be e

Y. the start of the line -

We will add yet another TextBox
named txtStartpointZ under the
first one and the Label to the left
of the textbox is called IbISpZ.
The Caption for the Label will be
7.

- .. ! 3

Figure 3.14 — Adding the Y and Z Textboxes

We will add three more textboxes ::
to the form and they are named o el

(:(EndpointX, tx{EndpointY,
and txtEndpointZ. We will make e s e e
the captions for the labels
identifying the textboxes; X, Y
and Z as shown in Figure 3.15.
The labels are designated called

IbIEpX, IbIEpY, and IbIEpZ.

' Z coordinates for Y ‘

- - the start of the line - -

-+ Z coordinates for
-- the end of the line -+ - ———————— 1

Figure 3.15 — Adding Four More Textboxes

3-10

Inserting a Command Buttons into a Form

A command button is used so that Input Line X
a user will execute the application.
Press the Command button on the
Control Toolbar to add a command ;
button. To size the label area, click " Z coordinates for Y: ‘
on the upper left area of the form ' the start of the line @ 00 ol
and hold down on the left mouse < 47 =
button, draw the command button

as shown in Figure 3.16.

'Z coordinates for Y ‘ ___________________

.- the end of the line -~ -

Draw Line

Figure 3.16 — Insert a Command Button onto a Form

We will name the command button Properties - cndDrawline X

using the name is cmdHello. |cmdDrawLinE CommandButton V|
i Alphabetic | Categorized
Alphabetic S ooravline. A
(Name) cmdDrawLine Sl =
- Accelerakor
Caption Draw i
Font Arial AukoSize False
orl - BackColor [] aH8000000FE:
He,Ig t 24 Back3kyle 1 - FmBackskyleCpague
Width 66 Cancel False
Caption Draw Line
The font on the sketch is 14 point, ControlTipText
Arial. When highlighting the row Default False
Enabled True
for Font, a small command button ;
. Fonk Arial
the right of the default font name Height 30
of Tahoma. Click on the three HelpContextlD |0
dotted button to open the Visual tEFiEd ézl
Basic Font window. Make the o o8
R Mouselcon {Mone)
changes as we did before and press MousePointer 0 - FrfousePointerDef aulk
OK to save the property. Ricture {Mone)
PickurePosition |7 - FrmPickurePositionaboveCenter |

Figure 3.17 — Changing the (Name) to cmdDrawLine

3-11

Add a second Command button;

named cmdClear is for clearing the

StartPoint X, Y and Z and the

EndPoint X, Y and Z textboxes.

The third command button is to S puaee iR S, |

exit the program. When the user BT e ST e S S S S R REER R R
presses the Exit command button, I T I P fo|
the application closes and full ST R S R e OO
control of the manual AutoCAD e
program returns to the user. Notice " Enterthe X Y.and - —m————— "
the equal spacing between the " Z coordinates for . Y |
command buttons gives a visually " the end of the line < °' ——————— 0
friendly appearance. ffffffffffffffffffffffff..Zff.|

Draw Line Clear [Exit

Figure 3.19 — Insert Two More Command Buttons

Adding a Copyright Statement to a Form

At the beginning of a new program, we will expect to see an explanation or any special
instructions in the form of comments such as copyright, permissions or other legal notices to
inform programmers what are the rules dealing with running the code. Comments at the
opening of the code could help an individual determine whether the program is right for their
application or is legal to use. The message box is a great tool when properly utilized to inform
someone if they are breaking a copyright law when running the code.

Finish the form with the following 25cpooa0anbnonasoanonann o :

C . Bie s s X::‘ :

copyright information. B e s s oo B sone:
.. Enterthe X, Y, and .- .

‘Input Line - copyright (c) 2006 by e

charles robbins ~ " the end of the line }iiiff" """""""""

If there are special rules or e

instructions that the user needs to Draw Line Clear [Exit

know, place that information on

the bottom of the form. eeed e

Input Line - copyright (c) 2008 by charles robbins

Figure 3.20 — Adding a Copyright Statement

Now that the form is complete, we will begin to write the code that actually interfaces the
content of the form using logic and computations to draw the stamping in the AutoCAD
graphical display. We will begin the program with comments and place addition phrases
throughout the program to assist ourselves or others in the future when modifying the code.

3-12

Adding Comments in Visual Basic to Communicate the Copyright

The comments we placed in the first three lines of the program will inform the individual
opening and reading the code, but those user that may run the application without checking, the
label on the bottom of the form with the copyright information is a great tool to alert the client
to the rules of the program and what will the application do.

To begin the actual coding of the program, double click on the Draw command button to enter
the programming list. At the top of the program and before the line of code with Sub
CreateLine (), place the following comments with the single quote () character. Remember,
the single quote character () will precede a comment and when the code is compiled, comments
are ignored.

Type the following line of code:
Sub CreateLine ()

'Input Line.dvb copyright (c) 2006 by Charles W. Robbins

'This program will open a dialogue box in AutoCAD and allow the user
'to enter a starting point (x, y, z) and an ending point (x, y, z).

'A line will be drawn from starting to ending point

M D:\Documents and Settings\Joe\DeskiopAWVBA Programsiinput Line. dvb - frminputli... : E|[Z|

|{General} v| |CreateLine v|
Sub CreateLine () =
'"Input Line.dwvh copyright (o) 2006 by Charles W. Fobbins —3
'Thiz program will open a dialogue box in AutoClAD and allow the user
'to enter a starting point (%, ¥, 2] and an ending point (%, ¥, =Z).
'L line will be drawn from starting to ending point 1
End Sub
| b’
=L | i

Figure 3.21 — Adding Comments into the Code

Declaring Variables in a Program with the Dimension Statement

When we are going to use a number, text string or object that may change throughout the life of
the code, we create a variable to hold the value of that changing entity. In Visual Basic, the
dimension or dim statement is one of the ways to declare a variable at the script of procedure
level. The other two ways are the Private and Public statements, which we will use in later
chapters.

3-13

Type the following lines of code after the comment.
'define the starting and centerpoint arrays, width, height and radius

Dim Startpoint (0 To 2) As Double
Dim Endpoint (0 To 2) As Double

In our program, we will declare a variable to enable us to draw a line by making a variable for
each vertex.

The vertices are declared as double integers (As Double) with an array of zero to two (0 to 2).
The vertex Startpoint(0) represents the X coordinate, the StartingPoint(1) represents the Y
coordinate and StartingPoint(2) represents the Z coordinate. Some may think that it is a waste of
time to involve the Z-axis in a two dimension drawing, but we will incorporate the Z coordinate
for designers that work in all three dimensions. For everyone else, we will just enter zero (0) in
the Z coordinate textbox.

P D:\Documents and Settings\Joe\DeskiopAWBA Programshinput Line.dvb - frminputLi... |Z||E||z|

|{General} v| |CreateLine v|
Suh CreateLine) =
'Input Line.dvkh copyright (o) 2006 by Charles W. Rokbhins 3
'Thiz programn will open a dialogue hox in AutoCAD and allow the user
'to enter a starting point (%, ¥, =] and an ending point (X, ¥, Z]1.
'hA line will be drawn from starting to ending point
'define the starting and ending point arrays -
Dim startpoint(0 To Z2) A= Double
Dim Endpoint {0 To £2) Az Double
| b
JES | E

Figure 3.22 — Declaring Variables with Dim Statements

When selecting variable names, they should be a word or a phrase without spaces that
represents the value that the variable contains. If we want to hold a value of one’s date of birth,
we can call the variable, DateofBirth. The keywords Date and Birth are in sentence case with
the first letter capitalized. There are no spaces in the name. Some programmers use the
underscore character () to separate words in phrases. This is acceptable, but a double
underscore () can cause errors if we do not detect the repeated character.

Assigning Values to the Variables

After we declare the variables and before we start drawing, we will assign the variables from
the input the user types in the textboxes on the launched user form and then assign values to
each of the vertices in the set of construction points.

Type the following code right below the declared variables.

3-14

‘assigning values to the variables

Startpoint(0) = txtStartPointX
Startpoint(1) = txtStartPointY
Startpoint(2) = txtStartPointZ
Endpoint(0) = txtEndPointX
Endpoint(1) = txtEndPointY
Endpoint(2) = txtEndPointZ

As we can see below, the first seven equal the values form the textbox. After that, we assign
each point’s X, Y and Z coordinate a number either from the variable or from a mathematical
calculation that we arrive from the sketch in Figure 3.23. We use the variables Width, Height
and Offset to measure the distance from one point to another.

M D:\Documents and Settings\Joe\DeskiopAWVBA Programsiinput Line. dvb - frminputli... |Z||E|rz|

|{General} v| |CreateLine v|

Sub CreateLine () =

'"Input Line.dwvh copyright (o) 2006 by Charles W. Fobbins —3

'Thiz program will open a dialogue box in AutoClAD and allow the user

'to enter a starting point (%, ¥, =] and an ending point (%, ¥, =Z).

'hA line will be drawn from starting to ending point

'define the starting and ending point arrays

Dim startpoint (0 To 2) Lz Double

Dim Endpoint (0 To 2) Az Double

'assigning wvalues to the wvariables

startpoint (0) = tXt3tartpointi

startpoint (1) = Lxt3tartpoint¥

startpoint (2) = Lxt3tartpoint?z

Endpoint(0) = txtEndpointX

Endpoint(l) = txtEndpoint¥

Fndpnint(Z] = txXtEndpointz B

End Sub

| b

il i | >

Figure 3.23 — Setting the Variables in the Code

Inputting the Code to Draw in Visual Basic

Now we want to enter the code that will actually draw the line in the AutoCAD Model Space.
We use the With expression to draw a line by typing With ThisDrawing.ModelSpace and the
.AddLine function then we tell the computer that it will draw in Modelspace by adding a line
from the startpoint to endpoint, which already have X, Y and Z coordinates. Type .Item(.Count
- 1).Update and then End With to finish the expression as shown below.

3-15

Go ahead and type the following comments and drawing code:

'‘Draw the line
With ThisDrawing.ModelSpace
AddLine startpoint, Endpoint
JItem(.Count - 1).Update
End With

P D:\Documents and Settings\Joe\Desktop\WBA Programsinput Line.dvb - frmInputli... |:||§|r5__<|

(ST | |CreateLine vl

Sub Createlinel) W
'"Input Line.dvh copyvright (o) 2006 by Charles W. FRobbins

'Thiz progragn will open a dialogue hox in AutoCAD and allow the user
'to enter a starting point (X, ¥, =) and an ending point (%, ¥, =Z1.
'A line will be drawn from starting to ending point

'define the starting and ending point arrays
Dim startpoint(d To 2) As Double
Dim Endpoint (0 To 2) A= Double

'assighing walues to the wvariahles
startpoint (0) = txt3tartpointX
startpoint (l] = CEL3tartpoint¥
Startpoint (2] Lxt3tartpointi
Endpoint (0) = LxtEndpointX
Endpointil) = LxtEndpoint¥
Endpoint (2] LxtEndpointiZ

'Draw the line

With ThisDrawing.Model3pace
LAddLine startpoint, Endpoint
Jteml . Count - 1) . Update

End With

End 3ub
== £ |

[

| ™

Figure 3.24 — Adding Code to Draw a Line

To end this Visual Basic subroutine, we will type a comment saying so. In the future, this will
be more elaborate, but for now we will just get used to announcing the natural divisions of the
script.

Type the following code:

End Sub

3-16

Resetting the Data with the cmdClear Command Button

To clear the textboxes containing the user input, we will first set the textbox for txtXcoord,
txtXcoord.text property to a “0.00” entry by using the equal sign “=".This makes the property
equal zero as a default. We do this also for the Y and Z coordinates. We will set the textboxes
for txtWidth, txtWidth.text property to a black entry by using the equal sign “=" and the null
string “”, and this will make that property blank. Notice that after the control object name the
dot (.) separates the suffix which is the name of the property for that object.

Key the following code as a new subroutine Private Sub cmdClear_Click().

Private Sub cmdClear_Click()

‘clear the form
txtStartpointX = ""
txtStartpointY = ""
txtStartpointZ = ""
txtEndpointX = ""
txtEndpointY = ""
txtEndpointZ = "

End Sub

| cmidClear W | | Click

|>L <

Frivate Jub cmdClear Click()

'clear the form
Lxt3tartpoint =
txt3tartpointy =
txt3tartpointz = T
LxtEndpointX
CHtEndpoint¥
txtEndpoint 2

End Subl

Figure 3.25 — Computing the Reset Button by Clearing Textboxes

Exiting the Program with the cmdExit Command Button

To exit this program, we will unload the application and end the program.
Type the following code:

Private Sub cmdExit_Click()
'unload and end program
Unload Me
End
End Sub

3-17

M D:\Documents and Settings\Joe\DeskiopAWBA Programsiinput Line. dvb - frminputli... |_

cmddExit v| |Click v|
—1
.
Private 3ub cmdExit Click() B
'unload and end program
Tnload HMe
End
End Sub
b’
] >

Figure 3.26 — Coding the Exit Button

Executing a Subroutine with the cmdDrawLine Command Button

In this program, we use a subroutine which is executed by the DrawLine command button, so
type the following code to execute the subroutine, CreateLine

Private Sub cmdDrawLine_Click()
'draw the line

CreateLine
End Sub

M D:\Documents and Settings\Joe\Deskiop\WBA Programs\input Line.dvb - frminputli... |._||E||§|

|cmtl[lrawLine w | |Click w |
Priwvate 3ub cmwdhrawline Click() :l
'draw the line B
Createline
End Sub| —
w
== < i | .

Figure 3.27 — Coding the Draw Line Button

Written below is the entire program for creating the Line Input. Next, we will insert a module to
launch the form.

Sub CreateLine ()

'Input Line.dvb copyright (c) 2006 by Charles W. Robbins

'This program will open a dialogue box in AutoCAD and allow the user
'to enter a starting point (x, y, z) and an ending point (x, y, z).

'A line will be drawn from starting to ending point

3-18

'define the starting and centerpoint arrays, width, height and radius

Dim Startpoint (0 To 2) As Double
Dim Endpoint (0 To 2) As Double

‘assigning values to the variables

Startpoint(0) = txtStartPointX
Startpoint(1) = txtStartPointY
Startpoint(2) = txtStartPointZ
Endpoint(0) = txtEndPointX
Endpoint(1) = txtEndPointY
Endpoint(2) = txtEndPointZ

'‘Draw the line

With ThisDrawing.ModelSpace
AddLine startpoint, Endpoint
Jtem(.Count - 1).Update

End With

End Sub

Private Sub cmdClear_Click()

‘clear the form
txtStartpointX = ""
txtStartpointY = ""
txtStartpointZ = ""
txtEndpointX = ""
txtEndpointY = ""
txtEndpointZ = "

End Sub

Private Sub cmdDrawLine_Click()
‘draw the line

CreateLine

End Sub

Private Sub cmdExit_Click()
'unload and end program
Unload Me
End
End Sub

3-19

Inserting a Module into a Visual Basic Application

Insert a Module by selecting Insert on the
Menu Bar and select Module as shown in
Figure 3.28. In the Project Menu, double click
on the Module and type the following code.

 Microsoft Visual Basic - G:\WBA Prog

File Edit Wiew | Insert | Format Debug

E R 4, Procedure...

Project - ACADProje RS =]

= |i& Module |

Sub Drawline ()

'draw the line
frminputLine.Show B & ACADProjec| 42} Class Moe
End Sub =5 Aut-:.o_:m File...
[E® Thisnn

Figure 3.28 — Inserting a Module

The line of code, frminputLine.Show will display the form at the beginning of the program.

File Edit View Insert Format Debug Run Tools Add-Ins wWindow Help

MaE-& 2 b1 om bl A .
Project - ACADProject x| e
- = D:\Documents and Settings\Joe\Desktop\VBA Programsiinput Line.dvb -... |L||E|g|
h {General) + | |DrawLine w
= @ ACADProject (D:\Documents and Settings',] —
=25 AutaCAD Objects Jub DrawLine () -
ThisDrawing FrimLineInput.3how
=5 Farms End 3ub
FrmInputLine
=55 Modules
¥ Modulel

Figure 3.29- Coding the Module

Running the Program

After noting that the program is B i X
saved, press the F5 to run the Input —
Line application. The Input Line e o X
window will appear on the graphical Z coordinates for Y
display in AutoCAD as shown in ihtatoithe e

igure 3.30 .

Enter the X, Y, and ’7
Z coordinates for Y
the end of the line

z

Draw Line Clear ‘ Exit ‘

N

Input Line - copyright {c) 2006 by charles robbins
X

Figure 3.30 — Launching the Program

3-20

Type the following data or
something similar into the textboxes
and select the Draw Line Command
Button to execute the program.

N =] < N = | 4
OIN|W| O | —|—

Figure 3.31 — Input Data

E File Edit Wiew Insert Format Tools Draw Dimension Modify window Help Express | D%k -5 x
| 3D Modeing vVER || DWH 2RDE DG s F - XX BERr=LE @
= YOS bmo vieLty||umm E R | AANQRFELFEIRE d29 | B 0RO €
‘ M ByLayer v| | ByLayer v‘ | ByLayer v|
Py =1
/| s\ ol
| a1
o a g o
= g8 © 3| X
r|% ?2 ®|X
@0 ® M| -
ol NG e
| o
| &
=0 it
|03 LI
- |4 M=
5|7 =
s 024
m i fowi ™
AlS S
] e
b3 &
2 A
g A=
THLAOVUSIVES TS50 000 D@l | oo /IO FIP (@i ¢ @ & 3
Comnand
4.4857, 2.0634, 0.0000 SMAP GRID ORTHO, POLAR |DSNAP OTRACK, ,m DN LT B 2 Aenotation Seale 11w g o g o O

Figure 3.32 — The Finished Draw

There are many variations of this Visual Basic Application we can practice and draw many
single view orthographic drawings. While we are practicing with forms, we can learn how to
use variables, make point assignments and draw just about anything we desire. These are skills
that we want to commit to memory.

* World Class CAD Challenge 5-2 * - Write a Visual Basic Application that draws a line
and is executed by a inputting data into a form. Complete the program in less than 120
minutes to maintain your World Class ranking.

Continue this drill four times making other shapes and simple orthographic views with
more than one line, each time completing the Visual Basic Application in less than 120
minutes to maintain your World Class ranking.

3-21

