Chapter

Stamping with
Four Holes

In this chapter, you will learn how to use the following VBA functions to
World Class standards:

= Beginning a New Visual Basic Application

* Opening the Visual Basic Editor in AutoCAD

= Laying Out a User Input Form in Visual Basic

= Creating and Inserting an Image into a Form in Visual Basic

= Insert a Label into a Form

* Insert a Textbox into a Form

* Insert Command Buttons into a Form

* Adding a Copyright Statement to a Form

* Adding Comments in Visual Basic to Communicate the Copyright
* Declaring Variables in a Program with the Dimension Statement
= Setting Variables in a Program

= Assigning Values to the Variables

* Inputting the Code to Draw in Visual Basic

* Resetting the Data with the cmdClear Command Button

= Exiting the Program with the cmdExit Command Button

= Exiting the Program with the cmdExit Command Button

* Executing a Subroutine with the cmdDraw Command Button

= Inserting a Module into a Visual Basic Application

* Running the Program

4-1

Beginning a New Visual Basic Application

In this chapter, we will learn how to use the Visual Basic Application (VBA) program to first
create a form and then to generate drawings automatically. We reiterate many elements of the
previous lesson, but now we add the capability to add lines, circles and arcs in AutoCAD Model
Space. Eventually in following chapters, we add text and dimensions, placing entities on
specific layers, having multiple views and soon we will be completing entire drawings in
seconds.

At the beginning of every chapter, we will start a new Visual Basic Application project, use a
sketch to determine the extent of what the program will do, create the form and then write the
code. Once the code is finished, we will run the program and an orthographic drawing will
appear on the graphical display.

Stamping with four holes

O O

Starting
Point

Width
Height

Radius

100 (0

O O

Draw Clear Exit

Offset

Stamping with 4 holes - Copyright (¢) 2005 by Charles Robbins

Figure 4.1 — Rough Sketch of the Stamping with 4 Holes and Arc Form

Remember, that all programming projects begin with one or more sketches, with one portraying
the part, detail, or assembly and the other being the user input form. In this Visual Basic
Project, Stamping with 4 Holes, we will be running a user input form inside the AutoCAD
application, so we need to sketch the structure of this special dialogue box. We will name the
Input form, Stamping with 4 holes. We will place seven textboxes on the left side of the form
to input the starting point, width, height, radius of the holes and the offset distance from the
edge of the part to the hole. On the right side of the form, we will place an image of the
stamping. We will have three command buttons, Draw, Clear and Exit. On the bottom of the
form, we will write the copyright statement using another label. On this presentation, we can
help ourselves by being as accurate as possible, by displaying sizes, fonts, colors and any other

42

specific details which will enable us to quickly create the form. From the beginning of inserting
the form into the project, we need to refer to our sketch. The sketch of the form is shown in
Figure 4.5.

Remember, we should train new programmers initially in the art of form building. When using
the editor, we insert and size the form, and selecting the Controls Toolbox, we will place all the
various input tools and properly label them. Whenever we place an input tool, the properties
window will display a list of every attribute associated with the tool, and we will take every
effort to arrange the tool by performing such actions as naming, labeling and sizing the visual
input device.

Opening the Visual Basic Editor in AutoCAD

Opening the Visual Basic Editor in AutoCAD is essential to creating the program to automate
the drawing process. In this version of the World Class CAD — Visual Basic Applications for
AutoCAD, we are using AutoCAD 2007, but we just finished using all the programs in this text
with a group programming in AutoCAD 2002. Their drawings were automatically made just as
efficiently as if they were using the most recent version of the Autodesk software.

FiIe Edit View Insert Format W58 Draw Dimension Modify ‘Window Help Express

ODOWE 2038 =[O Seding LR HEMESSE @

- O @ Quick Select... 1

= VOB omy Diravw Crder 4 —ByLa}le{ W

Inguiry 4

::ﬂ % %= Update Fields
| Ah 7 Block Ediar
(8] E& siref and Block In-place Editing 4
= EE ‘.{(} attribute Exbraction...
Ik 22 Properties CTRL+L
@ 0 DesignCenter CTRL+E
£ 5 Toal Palettes Window CTRL+3
~ 1 8 Sheet Set Manager CTRL+4
o | o4 b Info Palette CTRL+S
|y dbConnect CTRL+6
@ O Q farkup Set Manager CTRL+7

“ A quickcal CTRL+3
? E Command Ling CTRL+2
ﬁ [/_ Load Application. ..
! rf— Run Script...
o |y T s LT+
@ Aukol ISP 4 Load Project. ..
A i Display Image 4 4BA Manager ..

Zﬁ T_'EI; Named UCS. . Wisual Basic Editor ALT+FLL

Figure 4.2 — Launching the Visual Basic Editor

Select Tools on the Menu bar; pick Macro and then choose the Visual Basic Editor. Look to the
right of the phrase, Visual Basic Editor and the shortcut keys Alt — F11 is noted. For quick
launching of the editor, press Alt — F11

4-3

The Visual Basic Editor will appear on the computer desktop as a new program application.
Looking down on the computer’s Taskbar, we can see the AutoCAD and Microsoft Visual
Basic Editor program tabs. Just single click either program tab to switch between any
applications. However, if we close the AutoCAD drawing, unlike a stand alone version of
Visual Basic, the Visual Basic Editor will also close.

For those individuals with

previous Visual Basic experience, | e edt tew Iset Fomst Detug Fwn Teok adddns Window e
the Visual Basic Editor in |B&-E @6 oo) g ek 8550 0
AutoCAD has the same layout as
in other VB programs. The Menu | acaoprogect (Giobaity
Bar contains tools for our use as | = fiw e
well as the four toolbars shown in

Figure 4.4, which are Standard,
Debug, Edit and Userform.
Presently, only the Standard
toolbar is showing. On the left side
of the workspace is the Project
menu, which shows the files |]
pertaining to this project. Below
the Project menu is the Properties

F\Iphabetlc Categnrlzed

pane. If we remember the
Properties tool in AutoCAD, using
this device will be simple.

Figure 4.3 — The Visual Basic Editor

Figure 4.4 — Toolbars in the Visual Basic Editor

With the Visual Basic Editor open, select File on the Menu Bar and select Save Project.
Remember, we have a folder on either the desktop or in the My Documents folder called “VBA
Programs”. Save the project with the filename “Stamping with 4 holes”. The file has an
extension called dvb which means DCL and Visual Basic programs as shown in Figure 4.5.

Save in: | [VBA Programs hd | @ ? o '
.- Hello Warld
L_J Stamping with 4 holes

Recent

@

Desktop

ky Documents

ky Comnputer

Q File hame: |Stam|:|ing with 4 holes W | [Save]
by Metwork | Save as type: | Project [*.dvb] w | I_ Cancel]

X

Figure 4.5 — Saving the Stamping with 4 Holes Program

Laying Out a User Input Form in Visual Basic

Now that we have an idea of what
the dialogue box in our program
will look like, select the Insert
UserForm button on the Standard
toolbar to insert a new form as
shown in Figure 4.6.
Instantaneously, the once grey
work area is changed to contain
our UserForml. A Form folder
with Userforml is now in the
Project menu and the Properties
pane contains the attributes
associated with UserForml. (See
Figure 4.7)

»
050 al Ha)o < and Se £

5

Fle Edt View | Insert | Format Debug Run Tools
Bz2-E »on om B
Z E LserFarm

= W Module
iﬂ Class Module

= % ACADProjec

Figure 4.6 — Inserting a User Form

4-5

a8 Microsoft Visual Basic - C:\Documents and Settings\Dad\Desktop\WBA Programs\Stamping with 4 holes.dvb - [frmStampingwith4holes [UserFo

File Edit Wiew Insert Format Debug Run Tools Add-Ins Window Help
"

Ba-H » 1k ME YR @

B .

= @ ACADProject {C:\Documents and Setti

tamping with 4 holes

Controls l

4§ AutoCAD Objects kA abl
[E® ThisDrawing F & "

(=5 Forms
FrmStampingwitheholes

-

Properties - frmStampingwith4holes

frmStampingwith4he UserFaorm
Alphabetic | Categorized |

(Mame) frmStampingwith4holes #
BackCalor [aHs000000Fs: i
EorderColor B =Hz00000125
EarderStyle 0 - fmBorderStyleMone
Stamping with 4 holes

Cycle 0 - FrnCyclealForms
CrawEuffer 32000

Enabled True

Fonkt Tahoma

ForeColar B =Hz00000125

Height 250

Figure 4.7 — Designing the Stamping with 4 Holes Form in Visual Basic

NeXt, we Wlll Change the Caption al Microsoft Visual Basic - C:\Documents and Settings\Dad\Deskiop\WBA Programs\Stamping with 4 holes. dvb - [frmSta
Fle Edit View Inset Format Debug Run Tools AddIns Window Help

in the Properties pane to Stamping | 5 ;. g

with 4 Holes and Arc to agree ”E'”"’“im L
. . . B B
with the sketch in Figure 4.5. GO |- & acaveroret cpmmmments anise
. 5 Autar bjects
ahead and change the form in two | ~ &tfhi'éivim;
. . = Forms
other aspects, Height and Width. frstanpingathitdes
- < \ 3
Alphabetic
BackColor &HS80000013& frmStampinguithdhe UserForm =
Helght 250 Alphabetic | Categorized |
Width 400 e i1
BorderCalor W &HE000001 26,
0 - FrnBarderStyleNone
Stamping with < hales

A~ FrorucledliFarme

Figure 4.8 — Setting the Caption and other Properties

The form will change in size to the height and width measurement. The background color will
change to a light blue. There are many more attributes in the Properties pane that we will use on
future projects.

4-6

Creating and Inserting an Image into a Form in Visual Basic

Different from the last chapter, this form will have a picture of the part that we will create
automatically, so we need to make a drawing of part in AutoCAD. Dimension the drawing as
we do in any other drawing, but we will use the Edit Text tool to remove the actual dimension
and write in the word that matched the textbox label. In Figure 4.8, we show dimensions that
associate the Width, Height, Offset and Radius textbox with the drawing. When the drawing is
finished, we need to save the drawing as an image file. Use the Saveimg command to save file
on the VBA Programs folder. Create a folder named Images in the VBA Programs folder and
save the file as the same name as the program for matching purposes, Stamping with four holes.
We saved the file as a Bitmap with a width of 300 pixels and a height of 200 pixels.

Radius \

Width =

D
Height

L0
Offset

©

©

~— Offset

Figure 4.9 — Creating the Stamping with 4 Holes Form Image in AutoCAD

On the control toolbox, select the Image tool
and then draw a rectangular box on the form in
the upper right corner as shown in Figure 4.11.
After outlining the size of the image, we will
direct the program to the folder and filename
of the digital image. In the Properties — Image
pane, select the attribute named Picture. With
the mouse, select the three dot box in the
empty cell to the right of Picture. The Load
Picture window appears on the screen. Go to
the VBA Programs folder and then the Images
folder. Select the file, Stamping with four
holes and it will appear in the picture frame.

4-7

Toolbox

Controlz l

k A abl
=

vzl 2ElECt Objects
[= T
a =

Figure 4.10 — The Control Toolbox

E8l File Edit Wew Insert Format Dsbug

Ba-d

Project - ACADProject

.

= E ACADProject {C:\Documents and Setti
E-E5 AutoCAD Objects
" [EB ThisDrawing
=-E5 Forms

------ FrrnStarmpingwith4holes

KT e »

< | L2
Properties - Imagel x|
Imagel Image w |

Alphabetic | Categorized |

(Mame) Imagel

AutoSize False

BackColor [aHs000000FS:

Backstyle 1 - fmBackstyleCpague

BorderColor B aHs00000068
EorderStyle 1 - FmBorderStylesSingle

ControlTipText

Enabled True
Height 158
Left 78
Mouseloon {Mone)

MousePointer |0 - FmMousePointerDefault

TR oo -
Picturedlianment |2 - FrPictureslionmentCenter

@ Microsoft Visual Basic - C:\Documents and Settings\Dad\Desktop\VBA Programs\Stamping with 4 holes.dvb - [frmStampi

Run Tools Add-Ins Window Help

nom bl M E YD .

Stamping with 4 holes

Load Picture

22 Lok | £ images v Q2@

""" i skamping with Four bol

File name: |Stam|:ning with four holes | [Open]

Files of type: | &l Ficture Files v| [Cance |

Figure 4.11 — Placing an Image on the Form

Figure 4.12 — Placing an Image on the Form

4-8

Inserting a Label into a Form

A good form is easy to figure out by the user, so when we are attempting to provide information
on the window that will run in AutoCAD; we add labels to textboxes to explain our intent. Press
the Label (A) button on the Control Toolbar to add a label. To size the label area, click on the
upper left area of the form and hold down on the left mouse button, draw the dotted label box as
shown in the sketch.

We will name the Label using a

common Visual Basic naming Properties - IbIStartingPoint E3

convention where the IblStartingPoint Label v
programming object is a three Alphabetic | Categarized
letter prefix followed by the name (Plamme) IbltartingPaint ~
or phrase of the tool. For our first Accelerator
. . AukoSize False
label or} thls.form, the name is Backcolor [6HB00D001 35
lblStﬂl‘tngPOlnt. Backstyle 1 - FmBackstyleOpagque
BorderColor] &HE00000068:
Alphabetic Borderstyle O - FrBorderstyleMone
(Name) IblStartingPoint Caption Skarting Point
BackColor &H80000013& ControlTipText
Caption Type your name: ;rr'i"j o
- one .
Font Arial ForeColor [l &HE00000128
. . Height 30
On the sketch, the label’s caption HelpContextD 0
is “Starting Point:” The font on Left 6
the sketch is 10 point, Arial. When Mauselcon _ {Mane) :
. . . MousePointer |0 - FmiMousePoinkerDefault
highlighting the row for Font, a PictLre (Nane)
small command button with three PicturePosition |7 - FmPicturePositionAboveCent
small dots appears to the richt of SpecialEffect |0 - FmSpecialEffectFlat
bp g TabInde:x 0
the default font name of Tahoma. TabiStop False
Click on the three dotted button to Tag
open the Visual Basic Font Textalian 1 - FraTextalianLeft b
window.

Figure 4.13 — Changing the Font to Arial

4-9

We will select the Arial font,
Regular font style and 10 size for
this project to agree with the initial
sketch if the user input form.
When we adjust the attributes for
the label, these changes do not
alter globally for the other objects
on the form. If we wish to
underline the text or phrase in the
label, add a check to the Underline
checkbox in the Effects section of
the Font window. When we finish
making changes to the font
property, select the OK command
button to return to the work area.

When the first label is done, the
background color of the label
matches the background color of
the form. In many cases that effect
is visually pleasing to the eye,
versus introducing another color.
Both color and shape will direct
the user in completing the form
along with the explanation we
place on the window to guide the
designer in using the automated
programs. Use colors and shape
strategically to communicate well.

Eaont: Faont style: Size:
i Bold 10 ak,
()} @dnal Unicode M5 & || | Regular ~
Hr 007 GoldenEye | | Italic 1 i
B AcadEret 12
T AIGDT Baold Italic TR
T AmdtSymbolz 16
T AMGOT 18
b’ 20 2
Effects Sample
[Strikeout
[Underline AaBbYyiz
Script;
|Weatern A

Figure 4.14 — The Font Window in Visual Basic

Stamping with 4 Holes

Hoighs

Figure 4.15 — The Finished Label on the Form

4-10

Inserting a Textbox into a Form

A textbox is used so that a user of
the computer program can input
data in the form of words, numbers
or a mixture of both. Press the
TextBox (ab) button on the
Control Toolbar to add a textbox.
To size the textbox area, click on
the upper left area of the form and
hold down on the left mouse
button, draw the dotted textbox as
shown in Figure 4.15.

We will name the TextBox using
the three letter prefix followed by
the name or phrase of the tool. For
our first textbox, the name is
txtXcoord.

Alphabetic

(Name) txtXcoord
Height 18

Width 60

The font on the sketch is 12 point,
Arial. When highlighting the row
for Font, a small command button
with three small dots appears to
the right of the default font name
of Tahoma. Click on the three
dotted button to open the Visual
Basic Font window. Make the
changes like we did on the Label
and press OK to save the property.

Stamping with 4 Holes

ot

Radius —,

.................... i

Figure 4.16 — Placing a TextBox on the Form

txtXcoord TextBox w

Alphabetic | Categarized

bxtycoord ~
AukoSize False
AukoTah False
AukoWordSelect True
BackColor] aHs00000058,
Backstyle 1 - FmBackskyleOpaque
BorderCalor B =H=00000065,
Biorderstyle 0 - fmBorderstyleMone
Conkrol3ource
ControlTipTexk
DrragBehavior 0 - FmDragBehaviorDisabled
Enabled True
EnterFieldBehavior 0 - frEnterFisldEehaviorSel
EnterkeyBehavior |False
Font Arial
ForeColor W :H300000058
Height 18
HelpContextID 0
HideSelection True
[MEMode 0 - FrIMEModeMoControl
InteqgralHeight True
Left 7z
Locked False
MaxLenagth] !

Figure 4.17 — Changing the (Name) to txtName

We place a Label using a common Visual Basic naming convention IbIXcoord just to the left of
the Textbox. The Caption for the Label will be X. On all of the labels that are just to the left of
the Textboxes, we will align the text to the right by setting the TextAlign property to right

align.

4-11

We will add another TextBox
named txtYcoord under the first
one and the Label to the left of the
textbox is called IblYcoord. The
Caption for the Label will be Y.

We will add yet another TextBox
named txtZcoord under the first
one and the Label to the left of the
textbox is called IblZcoord. The
Caption for the Label will be Z.

We will add four more textboxes
named Width, Height, Radius
and Offset under the X, Y and Z
textboxes. The labels to the left of
the textbox are called IbIWidth,
IblHeight, IbIRadius and
IblOffset. The Captions for the
Labels are shown in Figure 4.19.

Stamping with 4 Holes

Radius —., Width

I

Haight

| ®
; —l |—— Offset

Figure 4.19 — Adding Four More Textboxes

4-12

Inserting a Command Buttons into a Form

A command button is used so that FSNSEERERSTHIN .
a user will execute the application. | e '
Press the Command button on the | point X ...
Control Toolbar to add a command :
button. To size the label area, click
on the upper left area of the form
and hold down on the left mouse
button, draw the command button
as shown in Figure 4.20.

Figure 4.20 — Insert a Command Button onto a Form

We will name the command button

using the name is cmdDraw. emdDraw CommandButton v|
Alphabetic | Categarized
Alphabetic cmdDraw »
(Name) cmdDraw fecelerator
Caption Draw AukoSize False
Font Arial BackColor] s:Ha000000Fs:
Height 24 Backstyle 1 - FmBacksktyleOpagque
- Cancel False
Width 66 Caption Dir-at
ConkrolTipText
The font on the sketch is 18 point, Default False
. . . . Enabled True
Arial. When highlighting the row Fort Al
for Font, a small command button ForeCalar I :Ha00000124
with three small dots appears to Height 24
. HelpContextID |0
the right of the default font name L:Ft':' e 144
of Tahoma. Click on the three Lacked False
dotted button to open the Visual Mouselcon {Mone)

. . MousePointer 0 - FmfousePointerDef aulk
Basic Font wmdow. Make the Sicbre (one))
changes as we did before and press PicturePosition |7 - frPicturePositiondboveC
OK to save the property. Tablndex 15

TabStop True
Tag
TakeFocusOnclick | True b

Figure 4.21 — Changing the (Name) to cmdDraw

4-13

Add a second Command button;
named cmdClear is for clearing the
Staring Point, Width, Height,
Radius and Offset objects. The
third command button is to exit the
program. When the user presses
the Exit command button, the
application closes and full control
of the manual AutoCAD program
returns to the user. Notice the
equal spacing between the
command buttons gives a visually
friendly appearance.

Starting - - .)(. i

Point - -7 :

Figure 4.22 — Insert Two More Command Buttons

Adding a Copyright Statement to a Form

At the beginning of a new program, we will expect to see an explanation or any special
instructions in the form of comments such as copyright, permissions or other legal notices to
inform programmers what are the rules dealing with running the code. Comments at the
opening of the code could help an individual determine whether the program is right for their
application or is legal to use. The message box is a great tool when properly utilized to inform
someone if they are breaking a copyright law when running the code.

Finish the form with the following
copyright information.

‘Stamping with 4 holes - copyright
(c) 2006 by charles robbins

If there are special rules or
instructions that the user needs to
know, place that information on
the bottom of the form.

Stamping with 4 Holes

Starting -X. i

Point - - oo : —

e . Offset @
o Radius: : ; 1 AQL_OHW

....................... Draw l Clear [Exit [

Stamping with 4 holes - copyright {c} 2006 by charles rebbins

Figure 4.23 — Adding a Copyright Statement

Now that the form is complete, we will begin to write the code that actually interfaces the
content of the form using logic and computations to draw the stamping in the AutoCAD
graphical display. We will begin the program with comments and place addition phrases
throughout the program to assist ourselves or others in the future when modifying the code.

4-14

Adding Comments in Visual Basic to Communicate the Copyright

The comments we placed in the first three lines of the program will inform the individual
opening and reading the code, but those user that may run the application without checking, the
label on the bottom of the form with the copyright information is a great tool to alert the client
to the rules of the program and what will the application do.

To begin the actual coding of the program, double click on the Draw command button to enter
the programming list. At the top of the program and before the line of code with Sub
CreateStampingwith4Holes (), place the following comments with the single quote (°)
character. Remember, the single quote character () will precede a comment and when the code
is compiled, comments are ignored.

Type the following line of code:
Sub CreateStampingwith4Holes ()

‘Stamping with 4 holes.dvb copyright (c) 2006 by Charles W. Robbins
'This program will open a dialogue box in AutoCAD, allow the user to enter a starting point (x, y z)
'Width, Height, Radius and Offset and then draw a four holed stamping

™ G:\WWBA Programs\Stamping with 4 holes. dvb - frm5Stampingwith4holes [Code)

thmmn v||CmMemmmmmwﬁmmohs v|

Sub CreateltampingwithdHoles ()

'Stamping with 4 holes.dvbh copyright (o) 2006 by Charles W. Robbins
'This program will open a dialogue box in AutoCAD, allow the user to enter & starting po
'Width, Height, Radius and Offset and then draw a four holed stamping

=< | >

Figure 4.24 — Adding Comments into the Code

Declaring Variables in a Program with the Dimension Statement

When we are going to use a number, text string or object that may change throughout the life of
the code, we create a variable to hold the value of that changing entity. In Visual Basic, the
dimension or dim statement is one of the ways to declare a variable at the script of procedure
level. The other two ways are the Private and Public statements, which we will use in later
chapters.

Type the following lines of code after the comment.
'define the starting and centerpoint arrays, width, height and radius

Dim CircleObject As AcadCircle
Dim LineObject As AcadLine
Dim Startingpoint(0 To 2) As Double

4-15

Dim P2(0 To 2) As Double

Dim P3(0 To 2) As Double

Dim P4(0 To 2) As Double

Dim Center1(0 To 2) As Double
Dim Center2(0 To 2) As Double
Dim Center3(0 To 2) As Double
Dim Center4(0 To 2) As Double
Dim Width As Double

Dim Height As Double

Dim Radius As Double

Dim Offset As Double

In our program, we will declare a variable to enable us to draw circles and lines, a variable for
each vertex and a variable for the height, width, radius and offset. As we can see below, the
made up name CircleObject is an AutoCAD Circle by definition and the contrived name
LineObject is a line.

The vertices are declared as double integers (As Double) with an array of zero to two (0 to 2).
The vertex StartingPoint(0) represents the X coordinate, the StartingPoint(1) represents the Y
coordinate and StartingPoint(2) represents the Z coordinate. Some may think that it is a waste of
time to involve the Z-axis in a two dimension drawing, but we will incorporate the Z coordinate
for designers that work in all three dimensions. For everyone else, we will just enter zero (0) in
the Z coordinate textbox.

Lastly, we declare Width, Height, Radius and Offset as double integers (As Double).

MR G:\VBA Programs\Stamping with 4 holes.dvb - frmStampingwith4holes (Code)

{General} w | | CreateStampingwith4Holes

s|[=]

'define the starting and centerpoint arrays, width, height and radius
Dim Circlelbiject As AcadCircle
Dim LineCkhject As AcadLine
Iiitn Startingpoint (0 To 2) As Double
Dim PZ(0 To 2) Ais Double
Dim P30 To 2) is Double
Dim P4(0 To 2) is Double
Diw Centerl (0 To 2) Az Double
Dim CenteriZ (0 To 2) A= Double
Iitn Centerd (0 To &) Ais Double
Dim Center4 (0 To 2) As Double
Iiitn Width As Double
Diw Height ALs Double
I'im Radius ks Double
Iin Offset bs Double

Figure 4.25 — Declaring Variables with Dim Statements

When selecting variable names, they should be a word or a phrase without spaces that
represents the value that the variable contains. If we want to hold a value of one’s date of birth,
we can call the variable, DateofBirth. The keywords Date and Birth are in sentence case with
the first letter capitalized. There are no spaces in the name. Some programmers use the

4-16

underscore character () to separate words in phrases. This is acceptable, but a double
underscore () can cause errors if we do not detect the repeated character.

Assigning Values to the Variables

After we declare the variables and before we start drawing, we will assign the variables from
the input the user types in the textboxes on the launched user form and then assign values to
each of the vertices in the set of construction points.

Type the following code right below the declared variables.

‘assigning values to the variables
Width = txtWidth
Height = txtHeight
Radius = txtRadius
Offset = txtOffset
Startingpoint(0) = txtXcoord
Startingpoint(1) = txtYcoord
Startingpoint(2) = txtZcoord

'point assignments and math
Center1(0) = txtStartingpointX + Offset
Center1(1) = txtStartingpointY + Offset
Center1(2) = txtStartingpointZ
Center2(0) = txtStartingpointX + Width - Offset
Center2(1) = txtStartingpointY + Offset
Center2(2) = txtStartingpointZ
Center3(0) = txtStartingpointX + Width - Offset
Center3(1) = txtStartingpointY + Height - Offset
Center3(2) = txtStartingpointZ
Center4(0) = txtStartingpointX + Offset
Center4(1) = txtStartingpointY + Height - Offset
Center4(2) = txtStartingpointZ
P2(0) = Startingpoint(0) + Width
P2(1) = Startingpoint(1)
P2(2) = Startingpoint(2)
P3(0) = Startingpoint(0) + Width
P3(1) = Startingpoint(1) + Height
P3(2) = Startingpoint(2)
P4(0) = Startingpoint(0)
P4(1) = Startingpoint(1) + Height
P4(2) = Startingpoint(2)

As we can see below, the first seven equal the values form the textbox. After that, we assign
each point’s X, Y and Z coordinate a number either from the variable or from a mathematical
calculation that we arrive from the sketch in Figure 4.26. We use the variables Width, Height
and Offset to measure the distance from one point to another.

4-17

™ G:\VBA Programs\Stamping with 4 holes.dvb - frmStampingwith4holes (Code) =3

{General) v | |CreateStampingwithalHoles - |
'assigning values to the wvariables jf

Width = txtWidth

Height = txtHeight

RFadius = txtRadius

Offset = txtOffset

Startingpoint (0) = tLxtZcoord

Startingpoint(l) = txt¥ocoord

Startingpoint(2) txtZcoord

'point assignments and math

Centerl(0) = txt3tartingpointX + Offset
Centerl(l) txt3tartingpointyY + Offset
Centerl(z) txt3tartingpointz

Centerz (0] txtitartingpoint¥ + Width - Offsetc
Centerz (1) txt3tartingpointyY + Offset

Centers (2] txt3tartingpointz

Centeri (0]
Centeri(l)
Centeri(2)
Centerd (0]

txtitartingpoint¥ + Width - Offsetc
txtitartingpointy¥ + Height - Offset
txtitartingpointz

txt3tartingpointX + Offset

Centerd (1) txt3tartingpointy¥ + Height - Offset
Centerd(z) txt3tartingpointz

P210) = Startingpoint (0) + Width

P2 i1) Startingpoint (1)

P2 12) = J3tartingpoint (2)
P310) = 3tartingpoint (0} + Width
P311) = Startingpoint(l) + Height
P312) = 3tartingpoint (2)
P40) = JItartingpoint (0)
P4(1) = Startingpoint(l) + Height
P4(2) = Startingpoint (2)
| w
== £ >

Figure 4.26 — Setting the Variables in the Code

Inputting the Code to Draw in Visual Basic

Now we want to enter the code that will actually draw lines and circles in the AutoCAD Model
Space. We use the Set function to draw a line by typing Set LineObject and then we tell the
computer that it will draw in Modelspace by adding a line from the starting point to point P2.

Go ahead and type the following comments and drawing code:

‘Execute the stamping with 4 hole
'‘Draw lines
Set LineObject = ThisDrawing.ModelSpace.AddLine(Startingpoint, P2)
Set LineObject = ThisDrawing.ModelSpace.AddLine(P2, P3)
Set LineObject = ThisDrawing.ModelSpace.AddLine(P3, P4)
Set LineObject = ThisDrawing.ModelSpace.AddLine(P4, Startingpoint)

'‘Draw circle
Set CircleObject = ThisDrawing.ModelSpace.AddCircle(Center1, Radius)

4-18

Set CircleObject = ThisDrawing.ModelSpace.AddCircle(Center2, Radius)
Set CircleObject = ThisDrawing.ModelSpace.AddCircle(Center3, Radius)
Set CircleObject = ThisDrawing.ModelSpace.AddCircle(Center4, Radius)

We draw three more lines from P2 to P3, P3 to P4 and finally from P4 to the startingpoint.

We use the Set function to draw a circle by typing Set CirlceObject and then we tell the
computer that it will draw in Modelspace by adding a circle from the center point number 1
with a radius that contains the value from the radius textbox. Then we draw three more circles
with the radius at center point 2, center point 3, and center point 4.

PR G:\VBA Programs\Stamping with 4 holes. dvb - frm5tampingwith4holes [Code)

| {zeneral) W | | CreateStampingwithd4Holes W |

'Execute the stawping with 4 hole P
'Draw lines

et LineChject = ThisDrawing.Model3pace.,dddLine (Startingpoint, P2)

Zet LineChject = ThisDrawing.ModelS3pace.iddLine (P2, P3)

et LinecChiject F ThisDrawing.ModelSpace. ddLine (P3, P4)

Zet LineChject = ThisDrawing.Model3pace.iddLine (P4, Startingpoint)

'Draw circle
Set CircledChiject
Set CircleChiject
Set CircleChject
Set CircleChiject
End Sub

= »
Figure 4.27 — Drawing the Lines and Circles with the Code

ThisDhrawing.ModelZpace. lddCirele (Centerl, Radius)
Thisbrawing.ModelSpace. 2ddCircle (Centers, Radius)
ThisDhrawing.Model2pace. ddCircle (Centerd3, Radius)
Thisbrawing.ModelSpace. 2ddCircle (Centerd, Radius)

To end this Visual Basic subroutine, we will type a comment saying so. In the future, this will
be more elaborate, but for now we will just get used to announcing the natural divisions of the
script.

Type the following code:

‘End of program
End Sub

Resetting the Data with the cmdClear Command Button

To clear the textboxes containing the user input, we will first set the textbox for txtXcoord,
txtXcoord.text property to a “0.00” entry by using the equal sign “=".This makes the property
equal zero as a default. We do this also for the Y and Z coordinates. We will set the textboxes
for txtWidth, txtWidth.text property to a black entry by using the equal sign “=" and the null
string “”, and this will make that property blank. Notice that after the control object name the
dot (.) separates the suffix which is the name of the property for that object.

Key the following code as a new subroutine Private Sub cmdClear_Click().

4-19

Private Sub cmdClear_Click()
"clear the form
txtXcoord = "0.00"
txtYcoord = "0.00"
txtZcoord = "0.00"
txtWidth =""
txtHeight =""
txtRadius =""
txtOffset =""
End Sub

MR G:\WWBA Programs\Stamping with 4 holes. dvb - frmStampingwith4 holes (Code)

|cmthIear W | |Click w |

Frivate 3ub cmdClear Click() V-

'clear the form
txtEooord
txt¥ooord "O.oor
Lt Zocoord fo.oor
txtWidth = ™"
txtHeight e
txtRadius
cxtOffset

End Suhb

==« |

oL o0

e

<

|

Figure 4.28 — Computing the Reset Button by Clearing Textboxes

Exiting the Program with the cmdExit Command Button

To exit this program, we will unload the application and end the program.
Type the following code:

Private Sub cmdExit_Click()
‘unload and end program
Unload Me
End
End Sub

M G:\WCC VBADrawStampingwith4Holes. dvb - frmStampinginputwith4Holes (Code)

cmdDraw | | Click

Private Sub cmdExit_Click()
'unload and end program
Tnload e
End
End Sub

== < |

—
.

| w

Figure 4.29 — Coding the Exit Button

4-20

Executing a Subroutine with the cmdDraw Command Button

In this program, we use a subroutine which is executed by the Draw command button, so type
the following code to execute the subroutine, CreateStampingwith4Holes

Private Sub cmdDraw_Click()
‘draw the stamping
CreateStampingwith4Holes

End Sub
M G:\WBA Programs\Stamping with 4 holes.dvb - frmStampingwith4holes (Code)
|cm(|[lraw v| |Cli|:k v|
—

Frivate 3ub cmdDraw Click()
'‘draw the stawmping

Create3tampingwithdHoles
End Sub

Figure 4.30 — Coding the Draw Button

Written below is the entire program for creating the Stamping with 4 holes. Next, we will insert
a module to launch the form.

Sub CreateStampingwith4Holes()
'define the starting and centerpoint arrays, width, height and radius
Dim CircleObject As AcadCircle
Dim LineObject As AcadLine
Dim Startingpoint(0 To 2) As Double
Dim P2(0 To 2) As Double
Dim P3(0 To 2) As Double
Dim P4(0 To 2) As Double
Dim Center1(0 To 2) As Double
Dim Center2(0 To 2) As Double
Dim Center3(0 To 2) As Double
Dim Center4(0 To 2) As Double
Dim Width As Double
Dim Height As Double
Dim Radius As Double
Dim Offset As Double

‘assigning values to the variables
Width = txtWidth
Height = txtHeight
Radius = txtRadius
Offset = txtOffset
Startingpoint(0) = txtXcoord
Startingpoint(1) = txtYcoord
Startingpoint(2) = txtZcoord

4-21

'point assignments and math
Center1(0) = txtStartingpointX + Offset
Center1(1) = txtStartingpointY + Offset
Center1(2) = txtStartingpointZ
Center2(0) = txtStartingpointX + Width - Offset
Center2(1) = txtStartingpointY + Offset
Center2(2) = txtStartingpointZ
Center3(0) = txtStartingpointX + Width - Offset
Center3(1) = txtStartingpointY + Height - Offset
Center3(2) = txtStartingpointZ
Center4(0) = txtStartingpointX + Offset
Center4(1) = txtStartingpointY + Height - Offset
Center4(2) = txtStartingpointZ
P2(0) = Startingpoint(0) + Width
P2(1) = Startingpoint(1)
P2(2) = Startingpoint(2)
P3(0) = Startingpoint(0) + Width
P3(1) = Startingpoint(1) + Height
P3(2) = Startingpoint(2)
P4(0) = Startingpoint(0)
P4(1) = Startingpoint(1) + Height
P4(2) = Startingpoint(2)

'‘Execute the stamping with 4 hole
'‘Draw lines
Set LineObject = ThisDrawing.ModelSpace.AddLine(Startingpoint, P2)
Set LineObject = ThisDrawing.ModelSpace.AddLine(P2, P3)
Set LineObject = ThisDrawing.ModelSpace.AddLine(P3, P4)
Set LineObject = ThisDrawing.ModelSpace.AddLine(P4, Startingpoint)

'‘Draw circle
Set CircleObject = ThisDrawing.ModelSpace.AddCircle(Center1, Radius)
Set CircleObject = ThisDrawing.ModelSpace.AddCircle(Center2, Radius)
Set CircleObject = ThisDrawing.ModelSpace.AddCircle(Center3, Radius)
Set CircleObject = ThisDrawing.ModelSpace.AddCircle(Center4, Radius)
End Sub

Private Sub cmdClear_Click()
"clear the form
txtXcoord ="0.00"
txtYcoord ="0.00"
txtZcoord ="0.00"
txtWidth = ""
txtHeight = ""
txtRadius =""
txtOffset = ""
End Sub

422

Private Sub cmdDraw_Click()
‘draw the stamping

CreateStampingwith4Holes
End Sub

Private Sub cmdExit_Click()
‘unload and end program
Unload Me
End
End Sub

Inserting a Module into a Visual Basic Application

Insert a Module by selecting Insert on the | [: :
Menu Bar and select Module as shown in | [Microsoft Visual Basic - G:\VBA Prog
Figure 4.31. In the Project Menu, double click File Edit Yiew | Inserk | Format Drebu
on the Module and type the following code. T - B - —
E 3~ | % Procedure...
Sub Drawstampingwithhole () Project - ACADProjeRH I AR UL
‘draw the stamping .
frmStampingwith4Holes.Show =] - & Module
End Sub = ‘ﬁ ACADProjec h::i Class Module
=55 AukoCAD File
ER Thisne —

Figure 4.31 — Inserting a Module

The line of code, frmStampingwith4Holes.Show will display the form at the beginning of the
program.

<@ Microsoft Visual Basic - G:\WCC VBA\DrawStampingwith4Holes. dvb

File Edit “iew Insert Format Debug Run Tools Add-Ins Window Help

Bz=-E # o yonom b B (2} in4, col1 .
Project - ACADProject v . .

. . x| 5 G:A\WCC VBA\DrawStampingwith4Holes. dvb - Module1 (Code) =[BT
= i ||[General) vl |-:Iraws‘tampingwithhole vl
= @ ACADProject {G:'\WCC ¥YBEA'\Drav - - —

-5 AutaCAD Objects Sub dravstampingwithhole () V.
ThisDr awing frm3tampingwithd4holes. 3how
-5 Fatms End Subk
FrmStampingwithgholes
=155 Madules
& Modulel
< | s | v
Properties - Modulel x| I51= £ 3

Figure 4.32 — Coding the Module

4-23

Running the Program

After noting that the program is
saved, press the F5 to run the
Stamping with 4 Holes application.
Stamping with 4 Holes window will
appear on the graphical display in
AutoCAD as shown in Figure 4.33.

Type

the

following data

or

something similar into the textboxes

and

select the

Draw Command

Button to execute the program.

Stamping with 4 Holes

Starting
Point

Y

z

Wiidth
Height
Radius

Offset

i
I

T

Width

o

[P

liesd |——omm

Draw ‘ Clear ‘

1 Stamping with 4 holes - copyright {c) 2006 by charles robbins
X

Figure 4.33 — Launching the Program

X 0

Y 0

Z 0
Width 6
Height 4
Radius | 0.25
Offset 0.5

Figure 4.34 — Input Data

4-24

x

EFiIe Edit Yiew Insert Format Tools Draw Dimension Madify ‘Window Help Express = =

DWHH 2R =bd 2 - X RERSIQLA A | myey BaHEBERE

\\?,| Y O® o v|;~;2 £ | W EyLaper v‘ | BuLayer v| | ByLayer v|
e al f=| =
e S|
2 O ol &
/o

B8 SIS
rle (e
@ O.@ Q|-
Q};::E:; % Alg
~| =
ol + o
| A =0

Al H
B || @ ¥ 7
S ™ B
ﬁr/_A ®| -
B , 2%
. H n,
A —t ol
W p [[Model {Capout! { LayourZ §

P BY RS TIFIOPE OO K@ A D9 @
TR OV USDrr g3l oo L0 || oo A OIDDPIFE @ ¢ @ @D

Fress E3C or ENTER to exit, or right-click to display shortcut menu.

|4

Command : <_ |

4 [l

o

E.7281, 22713, 0.0000 SMAP| GRID ORTHO| POLAR |DSNAP OTRACK] DUCS DYN| L'wT||MODEL E,ﬂa

Figure 4.35 — The Finished Draw

There are many variations of this Visual Basic Application we can practice and draw many
single view orthographic drawings. While we are practicing with forms, we can learn how to
use variables, make point assignments and draw just about anything we desire. These are skills
that we want to commit to memory.

* World Class CAD Challenge 5-2 * - Write a Visual Basic Application that draws a
rectangle with four holes and is executed by a inputting data in a form. Complete the
program in less than 120 minutes to maintain your World Class ranking.

Continue this drill four times making other shapes and simple orthographic views with
lines and circles, each time completing the Visual Basic Application in less than 120
minutes to maintain your World Class ranking.

425

