
 6-1

C h a p t e r 6

Stamping with Complex
Details

In this chapter, you will learn how to use the following VBA functions to
World Class standards:

! Beginning a New Visual Basic Application
! Opening the Visual Basic Editor in AutoCAD
! Laying Out a User Input Form in Visual Basic
! Creating and Inserting an Image into a Form in Visual Basic
! Insert a Label into a Form
! Insert a Textbox into a Form
! Insert Command Buttons into a Form
! Adding a Copyright Statement to a Form
! Adding Comments in Visual Basic to Communicate the Copyright
! Declaring Variables in a Program with the Dimension Statement
! Setting Variables in a Program
! Assigning Values to the Variables
! Inputting the Code to Set a System Variable
! Inputting the Code to Create and Set Layers
! Inputting the Code to Draw in Visual Basic
! Using Selection Sets and Mirroring in Visual Basic
! Drawing Circles and Ending the Subroutine
! Resetting the Data with the cmdClear Command Button
! Exiting the Program with the cmdExit Command Button
! Executing a Subroutine with the cmdDraw Command Button
! Inserting a Module into a Visual Basic Application
! Running the Program

 6-2

Beginning a New Visual Basic Application

In this chapter, we will continue to learn how to use the Visual Basic Application (VBA)
program to create a form and then to generate drawings automatically. We reiterate many
elements of the previous lesson, but now we add the capability to add complex calculations,
placing entities on specific layers, selection sets, and mirroring in AutoCAD Model Space.
Eventually in following chapters, we add text and dimensions, and having multiple views of the
part in Model Space.

At the beginning of every chapter, we will start a new Visual Basic Application project, use a
sketch to determine the extent of what the program will do, create the form and then write the
code. Once the code is finished, we will run the program and an orthographic drawing will
appear on the graphical display.

Figure 6.1 � Rough Sketch of the Gasket Form

Remember, that all programming projects begin with one or more sketches, with one portraying
the part, detail, or assembly and the other being the user input form. In this Visual Basic
Project, the Gasket program, we will be running a user input form inside the AutoCAD
application, so we need to sketch the structure of this special dialogue box. We will name the
Input form, Gasket Program. We will place nine textboxes on the left side of the form to key
in the starting point of the gasket, the hole to hole dimension, the hole to center dimensions,
radius1 (the large arc), radius2 (the small arc), diameter1 (the large hole), and diameter2 (the
small hole). On the right side of the form, we will place an image of the gasket. We will have

 6-3

three command buttons, Draw, Clear and Exit. On the bottom of the form, we will write the
copyright statement using another label. On this presentation, we can help ourselves by being as
accurate as possible, by displaying sizes, fonts, colors and any other specific details which will
enable us to quickly create the form. From the beginning of inserting the form into the project,
we need to refer to our sketch. The sketch of the form is shown in Figure 6.1.

Remember, we should train new programmers initially in the art of form building. When using
the editor, we insert and size the form, and selecting the Controls Toolbox, we will place all the
various input tools and properly label them. Whenever we place an input tool, the properties
window will display a list of attributes associated with the tool, and we will take every effort to
arrange the tool by performing such actions as naming, labeling and sizing the visual input
device.

Opening the Visual Basic Editor in AutoCAD

Opening the Visual Basic Editor in AutoCAD is essential to creating the program to automate
the drawing process. In this version of the World Class CAD � Visual Basic Applications for
AutoCAD, we are using AutoCAD 2008, but we just finished using all the programs in this text
with a group programming in AutoCAD 2000. Their drawings were automatically made just as
efficiently as if they were using the most recent version of the Autodesk software.

Figure 6.2 � Launching the Visual Basic Editor

 6-4

Select Tools on the Menu bar; pick Macro and then choose the Visual Basic Editor. Look to the
right of the phrase, Visual Basic Editor and the shortcut keys Alt � F11 is noted. For quick
launching of the editor, press Alt � F11.

The Visual Basic Editor will appear on the computer desktop as a new program application.
Looking down on the computer�s Taskbar, we can see the AutoCAD and Microsoft Visual
Basic Editor program tabs. Just single click either program tab to switch between any
applications. However, if we close the AutoCAD drawing, unlike a stand alone version of
Visual Basic, the Visual Basic Editor will also close.

For those individuals with
previous Visual Basic experience,
the Visual Basic Editor in
AutoCAD has the same layout as
in other VB programs. The Menu
Bar contains tools for our use as
well as the four toolbars shown in
Figure 6.4, which are Standard,
Debug, Edit and Userform.
Presently, only the Standard
toolbar is showing. On the left side
of the workspace is the Project
menu, which shows the files
pertaining to this project. Below
the Project menu is the Properties
pane. If we remember the
Properties tool in AutoCAD, using
this device will be simple.

 Figure 6.3 � The Visual Basic Editor

Figure 6.4 � Toolbars in the Visual Basic Editor

With the Visual Basic Editor open, select File on the Menu Bar and select Save Project.
Remember, we have a folder on either the desktop or in the My Documents folder called �VBA
Programs�. Save the project with the filename �Gasket�. The file has an extension called dvb

 6-5

which means DCL and Visual Basic programs as shown in Figure 6.5.

Figure 6.5 � Saving the Gasket Program

Laying Out a User Input Form in Visual Basic

Now that we have an idea of what
the dialogue box in our program
will look like, select the Insert
UserForm button on the Standard
toolbar to insert a new form as
shown in Figure 6.6.
Instantaneously, the once grey
work area is changed to contain
our UserForm1. A Form folder
with Userform1 is now in the
Project menu and the Properties
pane contains the attributes
associated with UserForm1. (See
Figure 6.7)

 Figure 6.6 � Inserting a User Form

Change the name of the user form to frmGasket. We use the frm prefix in front of all of the
form names in Visual Basic. Change the background of the form to light blue by setting the
BackColor in the Properties Pane on the left side of the Visual Basic Application window to
�&H80000013&�.

 6-6

Figure 6.7 � Designing the Gasket Form in Visual Basic

Next, we will change the Caption in
the Properties pane to Gasket to
agree with the sketch in Figure 6.8.
Go ahead and change the form in
two other aspects, Height and
Width.

Alphabetic
(Name) frmGasket
BackColor &H80000013&
Caption Gasket
Height 360
Width 500

 Figure 6.8 � Setting the Caption and other Properties

The form will change in size to the height and width measurement. The background color will
change to a light blue. There are many more attributes in the Properties pane that we will use on
future projects.

In previous chapters, we set the Font and Font size for the labels, textboxes and command
buttons after creating those specific interfaces. If we set the Font to Arial Narrow and the Font
size to 16 on the form, then all of the labels, textboxes and command buttons that we insert
from the Control Toolbox will already be set to those attributes.

 6-7

On the left side of the Visual Basic
Editor, locate the property that
controls the font and font size in
the Properties window. When
highlighting the row for Font, a
small command button with three
small dots appears to the right of
the default font name of Tahoma.
Click on the three dotted button to
open the Visual Basic Font
window.

 Figure 6.9 � Changing the Font to Tahoma

We will select the Arial Narrow
font, Bold font style and 16 size
for this project to agree with the
initial sketch if the user input
form. When we adjust the
attributes for the label, these
changes do not alter globally for
the other objects on the form. If
we wish to underline the text or
phrase in the label, add a check to
the Underline checkbox in the
Effects section of the Font
window. When we finish making
changes to the font property, select
the OK command button to return
to the work area.

 Figure 6.10 � The Font Window in Visual Basic

Creating and Inserting an Image into a Form in Visual Basic

As in the last chapter, this form will have a picture of the part that we will create automatically,
so we need to make a drawing of part in AutoCAD. Dimension the drawing as we do in any
other drawing, but we will use the Edit Text tool to remove the actual dimension and write in
the word that matches the textbox label. In Figure 6.11, we show dimensions that associate the
HTH (hole to hole), HTC (hole to center), Radius1, Radius2, Diameter1 and Diameter2
textboxes with the image. When the drawing is finished, we need to save the drawing as an
image file. Use the Saveimg command to save file on the VBA Programs folder. Create a folder
named Images in the VBA Programs folder and save the file as the same name as the program
for matching purposes, Gasket. We saved the file as a Bitmap with a width of 312 pixels and a
height of 210 pixels.

 6-8

Figure 6.11 � Creating the Gasket Form Image in AutoCAD

On the control toolbox, select the Image tool
and then draw a rectangular box on the form in
the upper right corner as shown in Figure 6.13.
After outlining the size of the image, we will
direct the program to the folder and filename
of the digital image. In the Properties � Image
pane, select the attribute named Picture. With
the mouse, select the three dot box in the
empty cell to the right of Picture. The Load
Picture window appears on the screen. Go to
the VBA Programs folder and then the Images
folder. Select the file, Gasket and it will
appear in the picture frame.

 Figure 6.12 � The Control Toolbox

In the Properties pane set the image name to ImgGasket, the width to 312 and the height to 210.
The image will finally appear as shown in Figure 6.14.

 6-9

Figure 6.13 � Placing an Image on the Form

Figure 6.14 � Placing an Image on the Form

 6-10

Inserting a Label into a Form

A good form is easy to figure out by the user, so when we are attempting to provide information
on the window that will run in AutoCAD; we add labels to textboxes to explain our intent. Press
the Label (A) button on the Control Toolbar to add a label. To size the label area, click on the
upper left area of the form and hold down on the left mouse button, draw the dotted label box as
shown in the sketch.

When the first label is done, the
background color of the label
matches the background color of
the form. In many cases that effect
is visually pleasing to the eye,
versus introducing another color.
Both color and shape will direct
the user in completing the form
along with the explanation we
place on the window to guide the
designer in using the automated
programs. Use colors and shape
strategically to communicate well.

 Figure 6.15 � The Finished Label on the Form

For the first label, set the name as lblStartingpoint and the caption as Startingpoint. The width
of the textbox is 118 and the height is 18. For labels on the left side of the textbox, set the
TextAlign attribute to right justification.

Inserting a Textbox into a Form

A textbox is used so that a user of
the computer program can input
data in the form of words, numbers
or a mixture of both. Press the
TextBox (ab) button on the
Control Toolbar to add a textbox.
To size the textbox area, click on
the upper left area of the form and
hold down on the left mouse
button, draw the dotted textbox as
shown in Figure 6.16.

 Figure 6.16 � Placing a TextBox on the Form

 6-11

We will name the TextBox using
the three letter prefix followed by
the name or phrase of the tool. For
our first textbox, the name is
txtSpX.

Alphabetic
(Name) txtSpX
Height 20
Width 78

We place a Label using a common
Visual Basic naming convention
lblSpX just to the left of the
Textbox. The Caption for the
Label will be X. On all of the
labels that are just to the left of the
Textboxes, we will align the text
to the right by setting the
TextAlign property to right align.

 Figure 6.17 � Changing the (Name) to txtName

We will add another TextBox
named txtSpY under the first one
and the Label to the left of the
textbox is called lblSpY. The
Caption for the Label will be Y.

We will add yet another TextBox
named txtSpZ under the first one
and the Label to the left of the
textbox is called lblSpZ. The
Caption for the Label will be Z.

 Figure 6.18 � Adding the Y and Z Textboxes

 6-12

We will add six more textboxes to
the form named txtHTH, txtHTC,
txtRadius1, txtRadius2,
txtDiameter1, and txtDiameter1.
The labels to the left of the textbox
are called lblHTH, lblHTC,
lblRadius1, lblRadius2,
lblDiameter1, and lblDiameter1.
The Captions for the Labels are
shown in Figure 6.19.

 Figure 6.19 � Adding the Last Six Textboxes

Inserting a Command Buttons into a Form

A command button is used so that
a user will execute the application.
Press the Command button on the
Control Toolbar to add a command
button. To size the label area, click
on the upper left area of the form
and hold down on the left mouse
button, draw the command button
as shown in Figure 6.20.

 Figure 6.20 � Insert a Command Button onto a Form

 6-13

We will name the command button
using the name is cmdDraw.

Alphabetic
(Name) cmdDraw
Caption Draw
Font Arial Narrow
Height 42
Width 78

The font we want for the
Command Button is 18 point,
Arial Narrow. When highlighting
the row for Font, a small command
button with three small dots
appears to the right of the font
name of Arial Narrow. Click on
the three dotted button to open the
Visual Basic Font window. Make
the changes as we did before and
press OK to save the property.

 Figure 6.21 � Changing the (Name) to cmdDraw

Add a second Command button;
named cmdClear is for clearing the
Starting point�s X, Y, Z
coordinates, Hole to Hole, Hole to
Center, Radius1, Radius2,
Diameter1 and Diameter2
textboxes. The third command
button is to exit the program.
When the user presses the Exit
command button, the application
closes and full control of the
manual AutoCAD program returns
to the user. Notice the equal
spacing between the command
buttons gives a visually friendly
appearance.

 Figure 6.22 � Insert Two More Command Buttons

Adding a Copyright Statement to a Form

At the beginning of a new program, we will expect to see an explanation or any special
instructions in the form of comments such as copyright, permissions or other legal notices to

 6-14

inform programmers what are the rules dealing with running the code. Comments at the
opening of the code could help an individual determine whether the program is right for their
application or is legal to use. The message box is a great tool when properly utilized to inform
someone if they are breaking a copyright law when running the code.

Finish the form with the following
copyright information.

�Gasket Program.dvb - copyright (c)
2008 by charles robbins. All Rights
Reserved.

If there are special rules or
instructions that the user needs to
know, place that information on
the bottom of the form.

 Figure 6.24 � Adding a Copyright Statement

Now that the form is complete, we will begin to write the code that actually interfaces the
content of the form using logic and computations to draw the stamping in the AutoCAD
graphical display. We will begin the program with comments and place addition phrases
throughout the program to assist ourselves or others in the future when modifying the code.

Adding Comments in Visual Basic to Communicate the Copyright

The comments we placed in the first three lines of the program will inform the individual
opening and reading the code, but those user that may run the application without checking, the
label on the bottom of the form with the copyright information is a great tool to alert the client
to the rules of the program and what will the application do.

To begin the actual coding of the program, double click on the Draw command button to enter
the programming list. At the top of the program and before the line of code with Sub
CreateGasket (), place the following comments with the single quote (�) character. Remember,
the single quote character (�) will precede a comment and when the code is compiled, comments
are ignored.

Type the following line of code:

Sub CreateGasket ()

'Gasket.dvb copyright (c) 2005 by Charles W. Robbins
'This program will open a dialogue box in AutoCAD, allow the user to enter a starting point (x, y z)
'Hole to Hole, Hole to Center, Radius1, Radius2, Diameter1, Diameter2 and then draw a gasket

 6-15

Figure 6.25 � Adding Comments into the Code

Declaring Variables in a Program with the Dimension Statement

When we are going to use a number, text string or object that may change throughout the life of
the code, we create a variable to hold the value of that changing entity. In Visual Basic, the
dimension or dim statement is one of the ways to declare a variable at the script of procedure
level. The other two ways are the Private and Public statements, which we will use in later
chapters.

Figure 6.26 � Identifying the Variables for the Gasket Program

In figure 6.26, we have a drawing that shows an X and Y grid for each point we need to draw.
In this program, we only need points 1 through 6. To create the points, we have made a grid
with the values of x1 through x5 horizontally on the bottom and y1 through y4 vertically on the
left. In the program, we will define point P1 as coordinate (x2, y1, z1), point P2 as (x4, y1, z1)
and so forth. We have found that points are easily defined using this method and therefore
explaining the algebra in the program is simpler.

 6-16

In our program, we will declare a variable to enable us to draw lines, arcs and circles, a variable
for each vertex and a variable for each textbox. As we can see below, the made up name
objCircle is an AutoCAD Circle by definition and the contrived name objLine is a line. The
objArc is an AutoCAD Arc. To mirror the two arcs and the line in the drawing, we have made
three addition variables, objSs1, objDrawingObject and objMirroredObject. The first is for
creating a selection set, the second is to hold drawing objects and the last is for mirroring the
objects. We will cover the selecting and mirroring code later in the chapter.

Type the following lines of code after the comment.

'Define the point arrays, the layers and objects

 Dim objSs1 As AcadSelectionSet
 Dim objDrawingObject As AcadEntity
 Dim objMirroredObject As AcadEntity
 Dim objLayer As AcadLayer
 Dim objArc As AcadArc
 Dim objCircle As AcadCircle
 Dim objLine As AcadLine
 Dim HTH As Double
 Dim HTC As Double
 Dim Radius1 As Double
 Dim Radius2 As Double
 Dim Diameter1 As Double
 Dim Diameter2 As Double
 Dim P1(0 To 2) As Double
 Dim P2(0 To 2) As Double
 Dim P3(0 To 2) As Double
 Dim P4(0 To 2) As Double
 Dim P5(0 To 2) As Double
 Dim P6(0 To 2) As Double

 Dim x1 As Double
 Dim x2 As Double
 Dim x3 As Double
 Dim x4 As Double
 Dim x5 As Double
 Dim y1 As Double
 Dim y2 As Double
 Dim y3 As Double
 Dim y4 As Double
 Dim z1 As Double
 Dim Length As Double
 Dim Angle As Double
 Dim pi As Double

Next, we declare HTH, HTC, Radius1, Radius2, Diameter1 and Diameter2 as double integers
(As Double).

 6-17

The vertices or points are declared as double integers (As Double) with an array of zero to two
(0 to 2). The vertex P1(0) represents the X coordinate, the P1(1) represents the Y coordinate and
P1(2) represents the Z coordinate. Some may think that it is a waste of time to involve the Z-
axis in a two dimension drawing, but we will incorporate the Z coordinate for designers that
work in all three dimensions. For everyone else, we will just enter zero (0) in the Z coordinate
textbox. We will declare points P1 through P6 for the vertices in the drawing in Figure 6.26.

As discussed previously, we have given the gasket drawing problem a grid, so we declare x1
through x5, y1 through y4, and z1. To calculate the geometry of the angled line, we made two
addition variables, Length and Angle. Finally, we set a variable named pi which will hold
3.14159265358979 for this mathematical constant.

Figure 6.27 � Declaring Variables with Dim Statements

Remember, when selecting variable names, they should be a word or a phrase without spaces
that represents the value that the variable contains. If we want to hold a value of one�s date of
birth, we can call the variable, DateofBirth. The keywords Date and Birth are in sentence case
with the first letter capitalized. There are no spaces in the name. Some programmers use the
underscore character (_) to separate words in phrases. This is acceptable, but a double
underscore (__) can cause errors if we do not detect the repeated character.

 6-18

Assigning Values to the Variables

After we declare the variables and before we start drawing, we will assign the variables from
the input the user types in the textboxes on the launched user form and then assign values to
each of the vertices in the set of construction points.

Assigning the values to pi and the
variables representing the
textboxes is quite easy; however
doing the geometry is a challenge
to some programmers. The first
real math in the subroutine is
computing the adjacent side of the
angle using the Pythagorean
theorem, where a²+b²=c². Except,
we need to find the length of the
adjacent side by computing:

b²=c²-a²

 Figure 6.28 �Variables for Length and Angle

We substitute Length for b, HTC for c and Radius1-Radius2 for a. To find b and not b², we use
the square root function Sqr. To square a number, we use the ^2 to take the value to the second
power. Write the equation in the subroutine:

Length = Sqr(HTC ^ 2 - (Radius1 - Radius2) ^ 2)

To get the angle of the line between the arcs in the gasket problem, we will use the arctangent
function Atn. The tangent of an angle of a right triangle is the length of the opposite side
divided by the length of the adjacent side. Use parenthesis to assure the order of operations is
done correctly. To find the arctangent, we divide (Radius1-Radius2) by Length using the
equation:

Angle = Atn((Radius1 - Radius2) / Length)

The value of x4 is txtSpX, sy1 is
txtSpY and z1 is txtSpZ, making
P2 the center point of the gasket.
Finding the other measurement
along the X or Y number lines is
quite easy, except the X and Y
values for P3 and P4. Figure 6.29
shows the vertical length of a
triangle as the radius times the sine
of the angle plus Pi divided by 2
and the horizontal length as the
radius times the cosine of the
angle plus Pi divided by 2 Figure 6.29 �Variables Defined by Sine and Cosine

 6-19

Type the following code right below the declared variables.

'assigning values to the variables

 pi = 3.14159265358979
 HTH = txtHTH
 HTC = txtHTC
 Radius1 = txtRadius1
 Radius2 = txtRadius2
 Diameter1 = txtDiameter1
 Diameter2 = txtDiameter2
 Length = Sqr(HTC ^ 2 - (Radius1 - Radius2) ^ 2)
 Angle = Atn((Radius1 - Radius2) / Length)
 x4 = txtSpX
 x2 = x4 - HTC
 x1 = x2 + Radius2 * Cos((pi / 2) + Angle)
 x3 = x4 + Radius1 * Cos(pi / 2 + Angle)
 x5 = x4 + HTC
 y1 = txtSpY
 y2 = y1 + Radius2 * Sin(pi / 2 + Angle)
 y3 = y1 + Radius1 * Sin(pi / 2 + Angle)
 y4 = y1 + Radius1
 z1 = txtSpZ

'point assignments and math

 P1(0) = x2
 P1(1) = y1
 P1(2) = z1
 P2(0) = x4
 P2(1) = y1
 P2(2) = z1
 P3(0) = x1
 P3(1) = y2
 P3(2) = z1
 P4(0) = x3
 P4(1) = y3
 P4(2) = z1
 P5(0) = x4
 P5(1) = y4
 P5(2) = z1
 P6(0) = x5
 P6(1) = y1
 P6(2) = z1

The point assignments are made as we discussed previously. Just review the data from figure
6.26 and make the correct coordinate designation as shown above.

 6-20

Inputting the Code to Set a System Variable

To change a system variable such as the Object Snap Mode, so the Endpoint, Midpoint or other
setting cannot interfere with the construction of the orthographic view of the gasket, we will
turn off the Object Snaps. Type ThisDrawing.SetVariable "osmode", 0 and the system setting
for Object Snaps will be turned off.

'Set variables

 ThisDrawing.SetVariable "osmode", 0

Inputting the Code to Create and Set a Layer

Many times, we will want to create a layer and then set the layer throughout a program. To
create a layer, type Set objLayer = ThisDrawing.Layers.Add and in parenthesis place the new
layer name in quotes, such as �Gasket�. After making the new layer, set the layer color and
linetype by typing objLayer.Color = acBlue and objLayer.Linetype = �Continuous�. We
could make a layer the color green and with hidden lines if we choose.

To set the layer current, before drawing an entity, we would type:

ThisDrawing.ActiveLayer = ThisDrawing.Layers("Gasket")

Figure 6.30 �Creating and Setting an AutoCAD Layer

Inputting the Code to Draw in Visual Basic

Now we want to enter the code that will actually draw the line and two arcs in the AutoCAD
Model Space. We use the Set function to draw a line by typing Set ObjLine and then we tell
the computer that it will draw in Modelspace by adding a line from point P3 to point P4.

Go ahead and type the following comments and drawing code:

'Draw a line

 Set objLine = ThisDrawing.ModelSpace.AddLine(P3, P4)

 6-21

Now, in this problem, we draw two arcs. We give the center point of the arc, the radius of the
arc and then the starting and ending angles in radians. The starting point of the small arc is pi/2
+ angle as we saw in figure 6.29. The ending point is pi radians which equals 180 degrees. The
larger radius starts at pi/2 and ends at pi/2 + angle. After coding for a few weeks, we get used to
working with radians.

'Draw the arcs

 Set objArc = ThisDrawing.ModelSpace.AddArc(P1, Radius2, pi / 2 + Angle, pi)
 Set objArc = ThisDrawing.ModelSpace.AddArc(P2, Radius1, pi / 2, pi / 2 + Angle)

Using Selection Sets and Mirroring in Visual Basic

Before we mirror the two arcs and a single line across the vertical centerline, we will select the
three objects using the Select all function, First, we define a temporary selection set called
objSs1 by typing Set objSs1 = ThisDrawing.SelectionSets.Add("TempSS") and then we select the
three entities using objSs1.Select (acSelectionSetAll).

To mirror the three objects in objSs1, we key the following code:

For Each objDrawingObject In objSs1
 Set objMirroredObject = objDrawingObject.Mirror(P2, P5)
 objMirroredObject.Update
Next

We will always input the mirror function as shown, only changing the name of the selection set
containing the entities or changing the points on the mirror line. In the next macro, we will
mirror the four arcs and two lines across the horizontal centerline defined by P1 and P2. The
last step in the process is to delete the selection set with objSs1.Delete.

'Mirror the line and arcs across horizontal centerline

Set objSs1 = ThisDrawing.SelectionSets.Add("TempSS")
 objSs1.Select (acSelectionSetAll)

For Each objDrawingObject In objSs1
 Set objMirroredObject = objDrawingObject.Mirror(P1, P2)
 objMirroredObject.Update
Next
objSs1.Delete

 6-22

Drawing the Circles and Ending the Subroutine in Visual Basic

We use the Set function to draw a circle by typing Set ObjCircle and then we tell the computer
that it will draw in Modelspace by adding a circle from the center point P2 with a radius that
contains the value from the Diameter textbox divided by 2. Then we draw two more circles with
the radius at center points P1 and P6.

'Draw the circles

 Set objCircle = ThisDrawing.ModelSpace.AddCircle(P2, Diameter1 / 2)
 Set objCircle = ThisDrawing.ModelSpace.AddCircle(P1, Diameter2 / 2)
 Set objCircle = ThisDrawing.ModelSpace.AddCircle(P6, Diameter2 / 2)

To end this Visual Basic subroutine, we will type a comment saying so. In the future, this will
be more elaborate, but for now we will just get used to announcing the natural divisions of the
script.

Type the following code:

'End of program
End Sub

Resetting the Data with the cmdClear Command Button

To clear the textboxes containing the user input, we will first set the textbox for txtXcoord,
txtXcoord.text property to a �0.00� entry by using the equal sign �=�.This makes the property
equal zero as a default. We do this also for the Y and Z coordinates. We will set the textboxes
for txtWidth, txtWidth.text property to a black entry by using the equal sign �=� and the null
string ��, and this will make that property blank. Notice that after the control object name the
dot (.) separates the suffix which is the name of the property for that object.

Key the following code as a new subroutine Private Sub cmdClear_Click().

Private Sub cmdClear_Click()
'clear the form
 txtSpX = ""
 txtSpY = ""
 txtSpZ = ""
 txtHTH = ""
 txtHTC = ""
 txtRadius1 = ""
 txtRadius2 = ""
 txtDiameter1 = ""
 txtDiameter2 = ""
End Sub

 6-23

Figure 6.31 � Computing the Reset Button by Clearing Textboxes

Exiting the Program with the cmdExit Command Button

To exit this program, we will unload the application and end the program.
Type the following code:

Private Sub cmdExit_Click()
'unload and end program
 Unload Me
 End
End Sub

Figure 6.32 � Coding the Exit Button

Executing a Subroutine with the cmdDraw Command Button

In this program, we use a subroutine which is executed by the Draw command button, so type
the following code to execute the subroutine, CreateGasket

Private Sub cmdDraw_Click()
'draw the Gasket
 CreateGasket
End Sub

 6-24

Figure 6.33 � Coding the Draw Button

Written below is the entire program for creating the Gasket.

Sub CreateGasket()

'Gasket.dvb copyright (c) 2005 by Charles W. Robbins
'This program will open a dialogue box in AutoCAD, allow the user to enter
'a starting point (x, y z),Width, Height, Radius, Diameter, Offset1, Offset2
'and then draw a four holed stamping with arcs

'define the starting and centerpoint arrays, width, height and radius

 Dim objSs1 As AcadSelectionSet
 Dim objDrawingObject As AcadEntity
 Dim objMirroredObject As AcadEntity
 Dim objLayer As AcadLayer
 Dim objArc As AcadArc
 Dim objCircle As AcadCircle
 Dim objLine As AcadLine
 Dim HTH As Double
 Dim HTC As Double
 Dim Radius1 As Double
 Dim Radius2 As Double
 Dim Diameter1 As Double
 Dim Diameter2 As Double
 Dim P1(0 To 2) As Double
 Dim P2(0 To 2) As Double
 Dim P3(0 To 2) As Double
 Dim P4(0 To 2) As Double
 Dim P5(0 To 2) As Double
 Dim P6(0 To 2) As Double
 Dim x1 As Double
 Dim x2 As Double
 Dim x3 As Double
 Dim x4 As Double
 Dim x5 As Double
 Dim y1 As Double
 Dim y2 As Double
 Dim y3 As Double
 Dim y4 As Double

 6-25

 Dim z1 As Double
 Dim Length As Double
 Dim Angle As Double
 Dim pi As Double

'assigning values to the variables

 pi = 3.14159265358979
 HTH = txtHTH
 HTC = txtHTC
 Radius1 = txtRadius1
 Radius2 = txtRadius2
 Diameter1 = txtDiameter1
 Diameter2 = txtDiameter2
 Length = Sqr(HTC ^ 2 - (Radius1 - Radius2) ^ 2)
 Angle = Atn((Radius1 - Radius2) / Length)
 x4 = txtSpX
 x2 = x4 - HTC
 x1 = x2 + Radius2 * Cos((pi / 2) + Angle)
 x3 = x4 + Radius1 * Cos(pi / 2 + Angle)
 x5 = x4 + HTC
 y1 = txtSpY
 y2 = y1 + Radius2 * Sin(pi / 2 + Angle)
 y3 = y1 + Radius1 * Sin(pi / 2 + Angle)
 y4 = y1 + Radius1
 z1 = txtSpZ

'point assignments and math

 P1(0) = x2
 P1(1) = y1
 P1(2) = z1
 P2(0) = x4
 P2(1) = y1
 P2(2) = z1
 P3(0) = x1
 P3(1) = y2
 P3(2) = z1
 P4(0) = x3
 P4(1) = y3
 P4(2) = z1
 P5(0) = x4
 P5(1) = y4
 P5(2) = z1
 P6(0) = x5
 P6(1) = y1
 P6(2) = z1

 6-26

'Set variables

 ThisDrawing.SetVariable "osmode", 0

'Create and set layer

 Set objLayer = ThisDrawing.Layers.Add("Gasket")
 objLayer.Color = acBlue
 objLayer.Linetype = "Continuous"

 ThisDrawing.ActiveLayer = ThisDrawing.Layers("Gasket")

'Draw a line

 Set objLine = ThisDrawing.ModelSpace.AddLine(P3, P4)

'Draw the arcs

 Set objArc = ThisDrawing.ModelSpace.AddArc(P1, Radius2, pi / 2 + Angle, pi)
 Set objArc = ThisDrawing.ModelSpace.AddArc(P2, Radius1, pi / 2, pi / 2 + Angle)

'Mirror the line and arcs across vertical centerline

 Set objSs1 = ThisDrawing.SelectionSets.Add("TempSS")
 objSs1.Select (acSelectionSetAll)

 For Each objDrawingObject In objSs1
 Set objMirroredObject = objDrawingObject.Mirror(P2, P5)
 objMirroredObject.Update
 Next
 objSs1.Delete

'Mirror the line and arcs across horizontal centerline

 Set objSs1 = ThisDrawing.SelectionSets.Add("TempSS")
 objSs1.Select (acSelectionSetAll)

 For Each objDrawingObject In objSs1
 Set objMirroredObject = objDrawingObject.Mirror(P1, P2)
 objMirroredObject.Update
 Next
 objSs1.Delete

'Draw the circles

 Set objCircle = ThisDrawing.ModelSpace.AddCircle(P2, Diameter1 / 2)
 Set objCircle = ThisDrawing.ModelSpace.AddCircle(P1, Diameter2 / 2)
 Set objCircle = ThisDrawing.ModelSpace.AddCircle(P6, Diameter2 / 2)

End Sub

 6-27

Private Sub cmdClear_Click()
'clear the form
 txtSpX = ""
 txtSpY = ""
 txtSpZ = ""
 txtHTH = ""
 txtHTC = ""
 txtRadius1 = ""
 txtRadius2 = ""
 txtDiameter1 = ""
 txtDiameter2 = ""
End Sub

Private Sub cmdDraw_Click()
'draw the Gasket
 CreateGasket
End Sub

Private Sub cmdExit_Click()
'unload and end program
 Unload Me
 End
End Sub

Inserting a Module into a Visual Basic Application

Insert a Module by selecting Insert on the
Menu Bar and select Module as shown in
Figure 6.34. In the Project Menu, double click
on the Module and type the following code.

Sub DrawGasket ()
'draw the Gasket
 frmGasket.Show
End Sub

 Figure 6.34 � Inserting a Module

The line of code, frmGasket.Show will display the form at the beginning of the program.

Figure 6.35 � Coding the Module

 6-28

Running the Program

After noting that the program is
saved, press the F5 to run the Gasket
application. Gasket window will
appear on the graphical display in
AutoCAD as shown in Figure 6.36.

 Figure 6.36 � Launching the Program

Type the following data or
something similar into the textboxes
and select the Draw Command
Button to execute the program. To
exit the program, press the Exit
command button on the Gasket
Program window. In AutoCAD, the
drawing of the finished gasket will
appear as shown in figure 6.38.

X 1
Y 1
Z 0

HTH 2
HTC 1

Radius1 1
Radius2 0.5

Diameter1 1
Diameter2 0.25

 Figure 6.37 � Input Data

There are many variations of this
Visual Basic Application we can
practice and draw many single view
orthographic drawings. While we
are practicing with forms, we can
learn how to use variables, make
point assignments and draw just
about anything we desire. These are
skills that we want to commit to
memory.

 Figure 6.38 � The Finished Draw

 6-29

* World Class CAD Challenge 5-6 * - Write a Visual Basic Application that draws a
gasket with three holes is executed by a inputting data in a form. Complete the program in
less than 120 minutes to maintain your World Class ranking.

Continue this drill four times making other shapes and simple orthographic views with
lines and circles, each time completing the Visual Basic Application in less than 120
minutes to maintain your World Class ranking.

