Chapter

Making Multiple View
Orthographic Drawings

In this chapter, you will learn how to use the following VBA functions to
World Class standards:

= Beginning a New Visual Basic Application

= Opening the Visual Basic Editor in AutoCAD

= Laying Out a User Input Form in Visual Basic

= Creating and Inserting an Image into a Form in Visual Basic
* Insert a Label into a Form

* Insert a Textbox into a Form

* Insert Command Buttons into a Form

* Adding a Copyright Statement to a Form

* Adding Comments in Visual Basic to Communicate the Copyright
* Declaring Variables in a Program with the Dimension Statement
= Setting Variables in a Program

= Assigning Values to the Variables

* Inputting the Code to Set a System Variable

* Load AutoCAD Linetypes

* Inputting the Code to Create and Set Layers

* Inputting the Code to Draw in Visual Basic

= Using Selection Sets and Mirroring in Visual Basic

* Drawing a Centerline and Arraying the Line

* Drawing Circles and Ending the Subroutine

= Resetting the Data with the cmdClear Command Button

= Exiting the Program with the cmdExit Command Button

* Executing a Subroutine with the cmdDraw Command Button
= Inserting a Module into a Visual Basic Application

* Running the Program

8-1

Beginning a New Visual Basic Application

In this chapter, we will continue to learn how to use the Visual Basic Application (VBA)
program to create a form and then to generate drawings automatically. We reiterate many
elements of the earlier lessons, but now we add the capability to add multiple views, placing
entities on specific layers, using selection sets, then mirroring and arraying entities in AutoCAD
Model Space. Eventually in following chapters, we add text and dimensions.

At the beginning of every chapter, we will start a new Visual Basic Application project, use a
sketch to determine the extent of what the program will do, create the form and then write the
code. Once the code is finished, we will run the program and multiple orthographic views will
appear on the graphical display.

Washer Program
X ot N T Rl
LITSIde
2 Diameter
Starting v (oD) B
Point |
7 /--\ u
— .'. — . | . | .
oD J [
ID '
Inside
Diameter -
W (D)
Draw Clear Exit
Gasket Program.dvb - Copyright 2008 by Charles Robbins. All Rights Reserved.

Figure 8.1 — Rough Sketch of the Washer Form

Remember, that all programming projects begin with one or more sketches, with one portraying
the part, detail, or assembly and the other being the user input form. In this Visual Basic
Project, the Washer program, we will be running a user input form inside the AutoCAD
application, so we need to sketch the structure of this special dialogue box. We will name the
Input form, Washer Program. We will place six textboxes on the left side of the form to key in
the starting point of the Washer, the outside diameter dimension, the inside diameter
measurement and washer width. On the right side of the form, we will place an image of the
Washer. We will have three command buttons, Draw, Clear and Exit. On the bottom of the
form, we will write the copyright statement using another label. On this presentation, we can
help ourselves by being as accurate as possible, by displaying sizes, fonts, colors and any other
specific details which will enable us to quickly create the form. From the beginning of inserting
the form into the project, we need to refer to our sketch. The sketch of the form is shown in
Figure 8.1.

Remember, we should train new programmers initially in the art of form building. When using
the editor, we insert and size the form, and selecting the Controls Toolbox, we will place all the
various input tools and properly label them. Whenever we place an input tool, the properties
window will display a list of attributes associated with the tool, and we will take every effort to
arrange the tool by performing such actions as naming, labeling and sizing the visual input
device.

Opening the Visual Basic Editor in AutoCAD

Opening the Visual Basic Editor in AutoCAD is essential to creating the program to automate
the drawing process. In this version of the World Class CAD — Visual Basic Applications for
AutoCAD, we are using AutoCAD 2008, but we just finished using all the programs in this text
with a group programming in AutoCAD 2000. Their drawings were automatically made just as
efficiently as if they were using the most recent version of the Autodesk software.

File Edit Wiew Insert Format WGEGES Draw Dimension Modify Window Help Express

ODWH 2048 =0 seding LR @EhSSE A
= VA% Do g;.:f;ile;t... , | ByLayer v/ |
ydl é Inguiry »
/ [a %= Update Fields
o) .ﬂ|ﬁ :? Block Editor
] & #ref and Block In-place Editing r
= EE R attribuke Extraction. .,
| ¥4 Properties CTRL+1
@O DesignCenter CTRL+Z
0|5 Tool Palettes Window CTRL+3
~1E 8 sheet Set Manager CTRL+4
|+ b Info Palette CTRL+S
I, dbConnect CTRL+6
@ r ﬂ Markup Set Manager CTRL+T
A quickcale CTRL+E
= E Command Line CTRL+9
ﬁ r/_ Load application. ..
' r»'— Run Script...
o T oo AT+
AuboLISP r Load Project. ..
LE N) YBA Manager...
A I Display Image r
% U_:I; Named UCS... ‘isual Basic Editor ALT+F11

Figure 8.2 — Launching the Visual Basic Editor

Now, select Tools on the Menu bar; then pick Macro and choose the Visual Basic Editor. Look
to the right of the phrase, Visual Basic Editor and the shortcut keys Alt — F11 is noted. For
quick launching of the editor, press Alt — F11.

8-3

The Visual Basic Editor will appear on the computer desktop as a new program application.
Looking down on the computer’s Taskbar, we can see the AutoCAD and Microsoft Visual
Basic Editor program tabs. Just single click either program tab to switch between the
applications. However, if we close the AutoCAD drawing, unlike a stand alone version of
Visual Basic, the Visual Basic Editor will also close.

For those individuals with

preVious Visual BaSiC experience) File Edit View Insert Format Debug Run Tools Add-Ins ‘Window Help
the Visual Basic Editor in |Ba-EB @ =en o«) g ekl 8SFE 0 0
AutoCAD has the same layout as [P EUEEEEEX
. .
in other VB programs. The Menu | o ror oy
Bar contains tools for our use as 5 puechp et
well as the four toolbars shown in

Figure 8.4, which are Standard,
Debug, Edit and Userform.
Presently, only the Standard
toolbar is showing. On the left side
of the workspace is the Project
menu, which shows the files | ¥
Alphabetic | Categorized |

pertaining to this project. Below

the Project menu is the Properties
pane. Being familiar with the
Properties tool in AutoCAD,
makes using this device simple.

Figure 8.3 — The Visual Basic Editor

Figure 8.4 — Toolbars in the Visual Basic Editor

With the Visual Basic Editor open, select File on the Menu Bar and select Save Project.
Remember, we have a folder on either the desktop or in the My Documents folder called “VBA
Programs”. Save the project with the filename “Washer”. The file has an extension called dvb
which means DCL and Visual Basic programs as shown in Figure 8.5.

8-4

Savein | [VBA Programs w | @ ? = ,
Ty Gasket
4 23 Hello Warld
My Recent Input Line
Documerits Math Functions
== Plate with 4 Holes and Arcs
@ Stamping with 4 holes
Deskiop
ky Computer
by N.etwu:urk
Places
File hame: |Washer| w | L Save J
Save as lwpe: | Praject [*.dvh) w | [Cancel]

Figure 8.5 — Saving the Washer Program

Laying Out a User Input Form in Visual Basic

Now that we have an idea of what
the dialogue box in our program
will look like, select the Insert
UserForm button on the Standard
toolbar to insert a new form as
shown in Figure 8.6.
Instantaneously, the once grey
work area is changed to contain
our UserForml. A Form folder
with Userforml is now in the
Project menu and the Properties
pane contains the attributes
associated with UserForml as
shown in figure 8.7.

»
050 al Ha)o < and Se £

File Edit \iew | Insert | Format Debug Run Tocls
B =-E »on om B
[1 -

0 CADP E LlserFarm
= W Module

= B: ACADProjec| &%) Class Module

Figure 8.6 — Inserting a User Form

Change the name of the user form to frmWasher. We use the frm prefix in front of all of the
form names in Visual Basic. Change the background of the form to light blue by setting the
BackColor in the Properties Pane on the left side of the Visual Basic Application window to

“&H80000013&”.

8-5

Ele Edit VWew Insert Format Debug Run Tools Add-Ins Window Help

Washer Program

Controls l

= @ ACADProject (E:\wcc YBA'\YBA Progr:

525 ALLOCAD Objects kA abl
P ThisDrawing F & &M a
Eg frmwasher SRR =38 HE

| frmWasher UserForm

Alphabetic ‘Categor’iied_

(Name) frmnit/asher LirTeiri i r et

BackColor [&Ha00000135 EEee e

BorderColar B &s00000126, - -

BorderStyle 0 - fmBiorderStyletione Tinar S
Caption \Washer Program VB e e D L L e s
Cydle 0 - fmCyclealForms
DrawBuffer 32000 e o e bl b B
Enabled True

Font Atial

FareCalor Wl sHsooooolze. (MERSSSELLE LR b b b b b b D
HepContextD 0 fRdocccocciniiniiiiiinn e
[<eepSerolBarsifisible |3 - fmScrollBarsBoth e
Left 1 = e

Mouselcon {Mone)

MousePoinker 0 - fmMousePointerDefault | kg - -0 o

Picture Mone)

Picturealignment 2 - FmPicturealignment Cente |

PictureSizeMode 0 - fmPictureSizeModeclip |

PictureTiling False

Figure 8.7 — Designing the Washer Form in Visual Basic

Next, we will change the Caption in

the Properties pane to Washer to [frmWasher LiserForm =
agree with the sketch in Figure 8.1.
Go ahead and change the form in

#Alphabetic lCategDrized]

two other aspects, Height and (Marne,) FrnViasher it
Width BackColor [] &Ha000001 38
: BorderCalor B =H=000001 28

0 - FmBorderskyleMone
W asher Program

0 - FrZyvcledllForms
32000

True

Alphabetic

(Name) frmWasher
BackColor | &H80000013&
Caption Washer

Height 350 Arial
Width 535 ForeCaolar B =Hzo00001 28
Height: 350

Figure 8.8 — Setting the Caption and other Properties

The form will change in size to the height and width measurement. The background color will
change to a light blue. There are many more attributes in the Properties pane that we will use on
future projects.

In previous chapters, we set the Font and Font size for the labels, textboxes and command
buttons after creating those specific interfaces. If we set the Font to Arial, Bold and the Font
size to 14 on the form, then all of the labels, textboxes and command buttons that we insert
from the Control Toolbox will already be set to those attributes.

8-6

On the left side of the Visual Basic Properties - frmWasher
Editor, locate the property that
controls the font and font size in
the Properties window. When R ———
highlighting the row for Font, a ' Frmiiasher
small command button with three E$23333313§
small dots appears to the right of 0 - FraBiorderStyleane
the default font name of Tahoma. Washer Program
Click on the three dotted button to

0 - FCycleAlForms
open the Visual Basic Font 32000

frmWasher UserForm |

window. , True
| Atial _J
|Forecalar W =Hs00000128 ,
Figure 8.9 — Changing the Font
We will select the Arial font, Bold =4 HEd
font style and 14 size for this _ -
ject to agree with the initial s i e
project to ag . ial | |Bold 1E ok |
sketch if the user 1nput form. = 8| [Feoar T & e
When we adjust the attributes for T AIGDT = |ltalic ER-— [Cancel |
(} Algerian [EECE |10 !
the label, these changes do not B AmdtSumbils [Bold Italic 11 ;
alter globally for the other objects %ﬁm— -
on the form. If we wish to Arial Black ot I
underline the text or phrase in ?he Effects Sample
label, add a check to the Underline [Stikeout
checkbox in the Effects section of [Undeiine ‘ AaBbYyZz
the Font window. When we finish
making changes to the font Seript
property, select the OK command estem x|
button to return to the work area.

Figure 8.10 — The Font Window in Visual Basic

Creating and Inserting an Image into a Form in Visual Basic

As in previous chapters, this form will have a picture of the part that we will create
automatically, so we need to make a drawing of part in AutoCAD. Dimension the drawing as
we do in any other drawing, but we will use the Edit Text tool to remove the actual dimension
and write in the variable name that matches the textbox label. In Figure 8.11, we show
dimensions that associate with the outside diameter (OD), inside diameter (ID) and width (W)
textboxes. When the drawing is finished, we need to save the drawing as an image file. Use the
Saveimg command to save file on the VBA Programs folder. Create a folder named Images in
the VBA Programs folder and save the file as the same name as the program for matching
purposes, Washer. We saved the file as a Bitmap with a width of 312 pixels and a height of 210
pixels.

8-7

~=— Width

Figure 8.11 — Creating the Washer Form Image in AutoCAD

On the control toolbox, select the Image tool
and then draw a rectangular box on the form in
the upper right corner as shown in figure 8.13.
After outlining the size of the image, we will
direct the program to the folder and filename
of the digital image. In the Properties — Image
pane, select the attribute named Picture. With
the mouse, select the three dot box in the
empty cell to the right of Picture. The Load
Picture window appears on the screen. Go to
the VBA Programs folder and then the Images
folder. Select the file, Washer and it will
appear in the picture frame.

Toolbox

Contralz l

k A abl
=

el 2ElEct Objects
M = = R
= =

Figure 8.12 — The Control Toolbox

In the Properties pane set the image name to ImgWasher, the width to 312 and the height to
210. The image will finally appear as shown in Figure 8.14.

8-8

\wee VBAVVBA Programs\Washer. dvb - [frmWasher {UserForm

EliE-E & BEd oo

Project - ACADProject x|

= @ ACADProject (E\wcc YBA'\YBA Progri
=55 AutoCAD Cbjects
1B ThisDrawing
=5 Forms
Frmiasher

L il |

Properties - Imagel

Imagel Image

Alphabetic | Categarized |

x| [

L

((Narne) {Imagel.

it |

Backolor [aHa000000Fs:
Backstyle 1 - FmBackstyleOpague
EBorderColor | aHE00000066
BorderStyle |1 - fmBorderStyleSingle
ControlTipText |

Enabled True

lHeight |2

Lefe 270

Mauseleon ((Hone]

MousePointer 0 - FmMousePainterDefault
Pickure {Bitmap)

PictureAlignment 2 - FmPickureAlignmentCenter
PictureSizeMode 0 - FroPictureSizeModeClip

PictureTiing | False

SpecialEffect |0 - fmSpedalEffectFlat
1L]

iTop 16

lisible

width

‘B Fle Edt Yiew Insert Format Debug

>

Run Tools Add-Ins ‘Window Help

nom M EYE 2

Washer Program

— = \Width

Lok ik | @ Deskiop

i 1 i !‘ My Computer
........ ‘_gMy Mebwork Places
........ hEnergy Mgmt
........ [_)Flash

() Terminal Blocks

Figure 8.13 — Placing an Image on the Form

File name: ‘drawing

| [Geen]

Files of type: ‘A\I Picture Files

'vl [Cancel]

Figure 8.14 — Placing an Image on the Form

8-9

Inserting a Label into a Form

A good form is easy to figure out by the user, so when we are attempting to provide information
on the window that will run in AutoCAD; we add labels to textboxes to explain our intent. Press
the Label (A) button on the Control Toolbar to add a label. To size the label area, click on the
upper left area of the form and hold down on the left mouse button, draw the dotted label box as
shown in the sketch.

When the first label is done, the
background color of the label
matches the background color of
the form. In many cases that effect
is visually pleasing to the eye,
versus introducing another color.
Both color and shape will direct
the user in completing the form
along with the explanation we
place on the window to guide the
designer in using the automated
programs. Use colors and shape
strategically to communicate well.

Figure 8.15 — The Finished Label on the Form

For the first label, set the name as IblStartingpoint and the caption as Startingpoint. The width
of the textbox is 66 and the height is 36. For a label with more than one line of text, left justify
the text.

Inserting a Textbox into a Form

A textbox is used so that a user of REELEEIE X
the computer program can input | = o x : :
data in the form of words, numbers
or a mixture of both. Press the
TextBox (ab) button on the
Control Toolbar to add a textbox
to the form. To size the textbox,
click on the upper left area of the
form and hold down on the left
mouse button, draw the dotted
textbox as shown in Figure 8.16.

Figure 8.16 — Placing a TextBox on the Form

8-10

We will name the textbox using
the three letter prefix txt followed
by the name or phrase of the tool.
For our first textbox, the name is
txtSpX.

Alphabetic

(Name) txtSpX
Height 20
Width 78

We place a Label using a common
Visual Basic naming convention
IbISpX just to the left of the
Textbox. The Caption for the
Label will be X. On all of the
labels that are just to the left of the
Textboxes, we will align the text
to the right by setting the
TextAlign property to right align.

We will add another TextBox
named txtSpY under the first one
and the Label to the left of the
textbox is called IbISpY. The
Caption for the Label will be Y.

We will add yet another TextBox
named txtSpZ under the first one
and the Label to the left of the
textbox is called IbISpZ. The
Caption for the Label will be Z.

Properties - Ext5px

ERESpX TextBox

vl

Alphabetic | Cateqgorized

ZontrolTipText
DrragBehavior
Enabled

EnterFieldBehavior 0 - FrmEnterFieldBehaviorselect

ExkSpi

False

False

True

[] aHs00000053,

1 - FmBackstyleCpague
B 2Hs00000063

0 - FrmBorderStyletone

0 - frmDragBehaviorDisabled
True

EnterkeyvBehavior False

Tahoma
B =+s00000083
20

3

Figure 8.17 — Changing the (Name) to txtName

Washer Program

ey
‘Point

e

Figure 8.18 — Adding the Y and Z Textboxes

8-11

We will add three more textboxes
to the form named txtOD, txtID,
and txtW. The labels to the left of
the textbox are called IblOD,
IbIID, and IbIW. The Captions for
the Labels are shown in figure
8.19.

Washer Program . EI .

Figure 8.19 — Adding the Last Six Textboxes

Inserting a Command Buttons into a Form

A command button is used so that
a user will execute the application.
Press the Command button on the
Control Toolbar to add a command
button. To size the label area, click
on the upper left area of the form
and hold down on the left mouse
button, draw the command button
as shown in Figure 8.20.

Washer Program &

‘Point Y ::

Figure 8.20 — Insert a Command Button onto a Form

8-12

We will name the command button
using the name is cmdDraw.

Properties - cndDraw

cmdDraw CommandButton |

Alphabetic :_l:‘:ategf:lrized L

Alphabetic i :

(Name) cmdDraw ([EMame) cmdCiran

Caption Draw Accelerator

Font Arial AukoSize False

Height 36 Backicolor [] &Ha000000F2:

Width 84 |[BacksStyle 1 - fmBackstylepagque

|Cancel False

The font we want for the t: e Cita
Command Button is 16 point, EDZ:aruTt Pex =
Arial Bold. When highlighting the lEnabled True
row for Font, a small command = fiial
button with three small dots gF.:.rec.:.h:.r B =H=000001268
appears to the right of the font |Height 36
name of Arial Narrow. Click on |HelpContextlD |0
the three dotted button to open the [Lett =M

. . . |[Locked False
Visual Basic Font window. Make |

. (Mouselcon (Mone)
the Changes as we did before and (MousePainter 0 - FriMousePaointerDefaulk
press OK to save the property. |Picture {Mone) _
I Dirkr walDncikinm 7 - FraDirk ||A'|:|||:l|v'\n.-i|'ii'\.l'\.|'|Hi'\.I..ln:nl‘_n:-l'\uEi

Figure 8.21 — Changing the (Name) to cmdDraw

Add a second Command button; KZEERaEE]
named cmdClear is for clearing the | - - -
Starting point’s X, Y, Z {istarting [. +‘ rwd‘h
coordinates, OD, ID, and W { Pomt . - ‘ |]
textboxes. The third command | |
button is to exit the program. | = op[| | _ (.
When the user presses the Exit {
command button, the application |

closes and full control of the § .

manual AutoCAD program returns §.

to the user. Notice the equal | - praw | | clear
spacing between the command | =
buttons gives a visually friendly
appearance.

Figure 8.22 — Insert Two More Command Buttons

Adding a Copyright Statement to a Form

At the beginning of a new program, we will expect to see an explanation or any special
instructions in the form of comments such as copyright, permissions or other legal notices to
inform programmers what are the rules dealing with running the code. Comments at the

8-13

opening of the code could help an individual determine whether the program is right for their
application or is legal to use. The message box is a great tool when properly utilized to inform
someone if they are breaking a copyright law when running the code.

Finish the form with the following EEEEEICIS

copyright information. S
‘Washer Program.dvb - copyright | Point
(c) 2008 by Charles Robbins. All | = >

Rights Reserved. | = oo
If there are special rules or [=~ 1]
instructions that the user needs to |1 i iy
know, place that information on [i

the bottom of the form. = F o

IR R R R Draw l Clear

‘ Washer Program.cvb - Copyright 2008 by Charles Robbins. All Rights Reserved.

Exit

Figure 8.23 — Adding a Copyright Statement

Now that the form is complete, we will begin to write the code that actually interfaces the
content of the form using logic and computations to draw the stamping in the AutoCAD
graphical display. We will begin the program with comments and place addition phrases
throughout the program to assist ourselves or others in the future when modifying the code.

Adding Comments in Visual Basic to Communicate the Copyright

The comments we placed in the first three lines of the program will inform the individual
opening and reading the code, but those user that may run the application without checking, the
label on the bottom of the form with the copyright information is a great tool to alert the client
to the rules of the program and what will the application do.

To begin the actual coding of the program, double click on the Draw command button to enter
the programming list. At the top of the program and before the line of code with Sub
CreateWasher (), place the following comments with the single quote (‘) character.
Remember, the single quote character () will precede a comment and when the code is
compiled, comments are ignored.

Type the following line of code:
Sub CreateWasher ()

‘Washer.dvb copyright (c) 2008 by Charles W. Robbins

'This program will open a dialogue box in AutoCAD, allow the user to enter a
'starting point (x, y z),outside diameter (OD), inside diameter (ID) and width (W).
'The program will draw a front and side view of the washer

8-14

{General} j |CreateWa3her

lul |-L

Jub CreatelWlasher [

'Washer..dvh copyright (o) 2008 by Charles W. Robbhins

'This program will open a dialogue bhox in AutoCAD, sllow the user to enter a
'starting point (®, ¥ Z),o0utside diameter (CD), inside diameter (ID) and width (W) .
'The program will draw a front and side wview of the washer

Figure 8.24 — Adding Comments into the Code

Declaring Variables in a Program with the Dimension Statement

When we are going to use a number, text string or object that may change throughout the life of
the code, we create a variable to hold the value of that changing entity. In Visual Basic, the
dimension or dim statement is one of the ways to declare a variable at the script of procedure
level. The other two ways are the Private and Public statements, which we will use in later
chapters.

—w -e— Width (W)
OQutside

Diameter i)
(OD) P8 Pl y3

y2
2 3 4
p R 1. -—-p—‘f1
pS pé

——
Inside ‘ el AW e
Diameter | —
(ID) - e W -

X1 | D\\/ t—

x2 x3 x4 xb x6

Figure 8.25 — Identifying the Variables for the Washer Program

In Figure 8.25, we have a drawing that shows an X and Y grid for each point we need to draw.
In this program, we only need points 1 through 6. To create the points, we have made a grid
with the values of x1 through x5 horizontally on the bottom and y1 through y4 vertically on the
left. In the program, we will define point P1 as coordinate (x2, y1, z1), point P2 as (x4, y1, z1)
and so forth. We have found that points are easily defined using this method and therefore
explaining the algebra in the program is simpler.

8-15

In our program, we will declare a variable to enable us to draw lines and circles, a variable for
each vertex and a variable for each textbox. As we can see below, the made up name objCircle
is an AutoCAD Circle by definition and the contrived name objLine is a line. To mirror the
four lines in the right orthographic view of the drawing, we have made three addition variables,
objSs1, objDrawingObject and objMirroredObject. The first is for creating a selection set,
the second is to hold drawing objects and the last is for mirroring the objects. We will cover the
selecting and mirroring code later in the chapter.

We will set variables for array (objArrayedObject), the linetypes (objLinetype) and layers
(objLayers). Then, we declare variables of the textboxes OD, ID and W as double integers (As
Double).

Type the following lines of code after the comment.

'Define the point arrays, the variables, and entities

Dim objSs1 As AcadSelectionSet
Dim objDrawingObject As AcadEntity
Dim objMirroredObject As AcadEntity
Dim objLayer As AcadLayer

Dim objCircle As AcadCircle

Dim objLine As AcadLine

Dim objLinetype As AcadLineType
Dim objArrayedObject As AcadEntity
Dim OD As Double

Dim ID As Double

Dim W As Double

Dim P1(0 To 2) As Double

Dim P2(0 To 2) As Double

Dim P3(0 To 2) As Double

Dim P4(0 To 2) As Double

Dim P5(0 To 2) As Double

Dim P6(0 To 2) As Double

Dim P7(0 To 2) As Double

Dim P8(0 To 2) As Double

Dim P9(0 To 2) As Double

Dim P10(0 To 2) As Double

Dim x1 As Double

Dim x2 As Double

Dim x3 As Double

Dim x4 As Double

Dim x5 As Double

Dim x6 As Double

Dim y1 As Double

Dim y2 As Double

Dim y3 As Double

Dim z1 As Double

8-16

The vertices or points are declared as double integers (As Double) with an array of zero to two
(0 to 2). The vertex P1(0) represents the X coordinate, the P1(1) represents the Y coordinate and
P1(2) represents the Z coordinate. Some may think that it is a waste of time to involve the Z-
axis in a two dimension drawing, but we will incorporate the Z coordinate for designers that
work in all three dimensions. For everyone else, we will just enter zero (0) in the Z coordinate
textbox. We will declare points P1 through P10 for the vertices in the drawing in Figure 8.25.

As discussed previously, we have given the Washer drawing problem a grid, so we declare x1
through x6, y1 through y3, and z1.

|{General) ﬂ |CreateWasher j

=

'Define the point arrays, the wvariables, and entities

Dim obj3s1l As Acad3electionlet
Dim objDrawingChject As AcadEntity
Dim objHirroredChject Az AcadEntity
Dim objLayer Az AcadLayer

Dim objCircle As AcadCircle

Dim objLine As AcadLine

Dim objLinetype As AcadLineType
Dim objhirrayedChject As AcadEntity
Dim oD ALz Doukble

Dim ID iz Doukle

Dim W iz Doukle

Dim P10 To Z2) As Double

Dim P20 To Z2) As Double

Dim P30 To Z2) As Double

Dim P40 To Z2) As Double

Dim P50 To Z2) As Double

Dim P&(0 To Z2) As Double

Dim P70 To Z2) As Double

Dim P50 To Z2) As Double

Dim P90 To Z2) As Double

Dim P10O{0 To Z) As Double

Dim x1 iz Double

Dim x2 iz Douhle

Dim x3 4Lz Double

Dim x4 iz Double

Dim x5 iz Douhle

Dim x6& Lz Doukhle

Dim w1 As Double

Dim y2 Az Double

Dim v3 Az Double

Dim =1 iz Douhle

|
Figure 8.26 — Declaring Variables with Dim Statements

Remember, when selecting variable names, they should be a word or a phrase without spaces
that represents the value that the variable contains. If we want to hold a value of one’s date of
birth, we can call the variable, DateofBirth. The keywords Date and Birth are in sentence case
with the first letter capitalized. There are no spaces in the name. Some programmers use the
underscore character () to separate words in phrases. This is acceptable, but a double
underscore () can cause errors if we do not detect the repeated character.

8-17

Assigning Values to the Variables

After we declare the variables and before we start drawing, we will assign values to the
variables from the input the user types in the textboxes on the launched user form and then
assign values to each of the vertices in the set of construction points.

We show algebraic expressions between each point on the X number line. After setting x1 to
the value entered in the X textbox, we calculate the value of x2 as x1 plus the outside diameter
divided by 2 plus the width W.

x2=x1+0D/2+W
To calculate the position x3, add 4 times W to x2 as shown below.
x3=x2+4*W

With practice and a good sketch such as shown in figure 8.25, writing the mathematical section
of the code can be done easily.

‘assigning values to the variables

OD = txtOD

ID = txtID

W = txtW

x1 = txtSpX
x2=x1+0D/2+W
x3=x2+4*W
x4=x3+2*W
x5=x4+W
x6=x5+2*W
y1 = txtSpY
y2=y1+ID/2
y3=y1+0D/2
z1 = txtSpZ

We use the same sketch to make the point assignments. Just review the data from Figure 8.25
and make the correct coordinate designation as shown. Remember that P1(0) is the x position,
P1(1) is the y position and P1(2) is the z position.

'point assignments and math

P1(0) = x1
P1(1) = y1
P1(2) = z1
P2(0) = x2
P2(1) = y1
P2(2) = z1

8-18

P3(0) = x3
P3(1) = y1
P3(2) = z1
P4(0) = x6
P4(1) = y1
P4(2) = z1
P5(0) = x4
P5(1) = y1
P5(2) = z1
P6(0) = x5
P6(1) = y1
P6(2) = z1
P7(0) = x5
P7(1) =y3
P7(2) = z1
P8(0) = x4
P8(1) =y3
P8(2) = z1
P9(0) = x4
P9(1) = y2
P9(2) = z1
P10(0) = X5
P10(1) = y2
P10(2) = 21

Inputting the Code to Set a System Variable

To change a system variable such as the Object Snap Mode, so the Endpoint, Midpoint or other
setting cannot interfere with the construction of the orthographic view of the Washer, we will
turn off the Object Snaps. Type ThisDrawing.SetVariable "osmode', 0 and the system setting
for Object Snaps will be turned off.

To change the linetype scale, use the same format, except the variable name is “ltscale” and the
new setting is 0.5.

'Set variables

ThisDrawing.SetVariable "osmode", 0
ThisDrawing.SetVariable "ltscale", 0.5

8-19

Load AutoCAD Linetypes

Before setting a linetype in a layer, we need to load them into the current file. Use the
ThisDrawing.Linetypes.Load function with the linetype name followed by a comma and the file
holding the linetype definition. Use On Error Resume Next before the expression to avoid errors
if the linetype is already loaded.

'Load linetypes
On Error Resume Next
ThisDrawing.Linetypes.Load "hidden", "acad.lin"
On Error Resume Next
ThisDrawing.Linetypes.Load "center", "acad.lin"

|{Genera|] ﬂ |CreateWasher ﬂ

'Load linetypes
On Error Eesuwme Next

Thisbrawing.Linetypes.Load "hidden®, "acad.lin"
On Error REesuwme Next
Thisbrawing.Linetypes.Load "ecenter®™, M"acad.lin"

Figure 8.27 — Loading Linetypes

Inputting the Code to Create and Set a Layer

Many times, we will want to create a layer and then set the layer throughout a program. To
create a layer, type Set objLayer = ThisDrawing.Layers.Add and in parenthesis place the new
layer name in quotes, such as “Washer”. After making the new layer, set the layer color and
linetype by typing objLayer.Color = acBlue and objLayer.Linetype = “Continuous”. We
could make a layer the color blue and with hidden lines if we choose.

In this program, we need to make a washer layer for the object with a continuous linetype, a
hidden line layer a hidden linetype and a center line layer with a center linetype. We can make
as many layers following the format below.

'Create and set layer

Set objLayer = ThisDrawing.Layers.Add("Washer")
objLayer.color = acBlue
objLayer.Linetype = "Continuous"

Set objLayer = ThisDrawing.Layers.Add("Hidden")
objLayer.color = acBlue
objLayer.Linetype = "Hidden"

Set objLayer = ThisDrawing.Layers.Add("Center")

objLayer.color = acGreen
objLayer.Linetype = "Center"

8-20

To set the layer current, before drawing an entity, we would type:

ThisDrawing.ActiveLayer = ThisDrawing.Layers("Washer")

{General} j |Crea‘teWasher j

'Create and set layer

Set obhjlayer = ThisDrawing.Layers.idd("Tasher™)
objlayer.color = acMagenta
objlayer.Linetype = "Continucus"

Zet objlayer = ThisDrawing.Layers. idd("Hidden'™)
objlayer.color = acElue
objlayer.Linetype = "Hidden™

Zet objlayer = ThisDrawing.Layers.idd("Center'™)
objlayer.color = acGreen

objlayer.Linetype = "Center™

Thislraving. Activelayer = ThisDrawing.Layers("Washer'™)

Figure 8.28 —Creating and Setting an AutoCAD Layer

Inputting the Code to Draw in Visual Basic

Now we want to enter the code that will actually draw the four lines in AutoCAD Model Space.
We use the Set function to draw a line by typing Set ObjLine and then we tell the computer
that it will draw in Modelspace by adding a line from point P6 to point P7. Draw the next two
lines from P7 to P8 and from P8 to P5.

Go ahead and type the following comments and drawing code:

'Draw three line

Set objLine = ThisDrawing.ModelSpace.AddLine(P6, P7)
Set objLine = ThisDrawing.ModelSpace.AddLine(P7, P8)
Set objLine = ThisDrawing.ModelSpace.AddLine(P8, P5)

ThisDrawing.ActiveLayer = ThisDrawing.Layers("Hidden")

Set objLine = ThisDrawing.ModelSpace.AddLine(P9, P10)

The last line on the right orthographic view is the hidden line from P9 to P10. We change the
layer by entering, ThisDrawing.ActiveLayer = ThisDrawing.Layers("Hidden'") before the
line code.

Using Selection Sets and Mirroring in Visual Basic

Before we mirror the four lines across the vertical centerline, we will select the four objects
using the Select all function, First, we define a temporary selection set called objSs1 by typing

8-21

Set objSs1 = ThisDrawing.SelectionSets.Add("TempSS") and then we select the four entities
using objSs1.Select (acSelectionSetAll).

To mirror the four objects in objSs1, we key the following code:

For Each objDrawingObject In objSs1
Set objMirroredObject = objDrawingObject.Mirror(P3, P4)
objMirroredObject.Update

Next

We will always input the mirror function as shown, only changing the name of the selection set
containing the entities or changing the points on the mirror line. The last step in the process is to
delete the selection set with objSs1.Delete.

Drawing a Centerline and Arraying the Line

Like mirroring, we array entities by selecting the object. This time we zoom all to have the
centerline appear in the graphical display, and then use acSelectionSetLast to retrieve the last
entity drawn. When we array the centerline, we type:

Set objArrayedObject = objDrawingObject.ArrayPolar(4, 2 * 3.14159265358979, P1)

Where the 4 is the number of objects in the array, the 2 * 3.14159265358979 represents 2 times
pior 360 degrees. P1 is the center point of the array. After the array, we delete the selection set
objSsl.

‘Draw center line
ThisDrawing.ActiveLayer = ThisDrawing.Layers("center")
Set objLine = ThisDrawing.ModelSpace.AddLine(P1, P2)

'Array the centerline around sp
ThisDrawing.Application.ZoomAll
Set objSs1 = ThisDrawing.SelectionSets.Add("TempSS")
objSs1.Select (acSelectionSetLast)

For Each objDrawingObject In objSs1
Set objArrayedObject = objDrawingObject.ArrayPolar(4, 2 * 3.14159265358979, P1)
objMirroredObject.Update

Next

objSs1.Delete

Set objLine = ThisDrawing.ModelSpace.AddLine(P3, P4)

Type Set objLine = ThisDrawing.ModelSpace.AddLine(P3, P4) to place the last centerline
which is in the right orthographic view from points P3 to P4.

8-22

Drawing the Circles and Ending the Subroutine in Visual Basic

We use the Set function to draw a circle by typing Set ObjCircle and then we tell the computer
that it will draw in Modelspace by adding a circle from the center point P1 with a radius that
contains the value from the Diameter textbox divided by 2. Then we draw one more circle with
the radius at center point P1.

'Draw the circles

ThisDrawing.ActiveLayer = ThisDrawing.Layers("Washer")
Set objCircle = ThisDrawing.ModelSpace.AddCircle(P1, 0D / 2)
Set objCircle = ThisDrawing.ModelSpace.AddCircle(P1, ID / 2)

To end this Visual Basic subroutine, we will type a comment saying so. In the future, this will
be more elaborate, but for now we will just get used to announcing the natural divisions of the
script.

Type the following code:

'End of program
End Sub

Resetting the Data with the cmdClear Command Button

To clear the textboxes containing the user input, we will first set the textbox for txtXcoord,
txtXcoord.text property to a “0.00” entry by using the equal sign “=".This makes the property
equal zero as a default. We do this also for the Y and Z coordinates. We will set the textboxes
for txtWidth, txtWidth.text property to a black entry by using the equal sign “=" and the null
string “”, and this will make that property blank. Notice that after the control object name the
dot (.) separates the suffix which is the name of the property for that object.

Key the following code as a new subroutine Private Sub cmdClear_Click().

Private Sub cmdClear_Click()
‘clear the form

txtSpX ="0"

txtSpY = "0"

txtSpZ = "0"

txtw ="0"

txtOD ="0"

txtID = "0"
End Sub

8-23

cmddClear ..:]]Click _v_]

Private Sub cmdClear Click()]
Lielear - the SFarn =
THLIpXE o
THLIpY o
THLIPI i
TxLW = "o
txeQD = "or
TxtID = ™ot
End Sub =

Figure 8.29 — Computing the Reset Button by Clearing Textboxes

Exiting the Program with the cmdExit Command Button

To exit this program, we will unload the application and end the program.
Type the following code:

Private Sub cmdExit_Click()
‘unload and end program
Unload Me
End
End Sub

|cm(lDraw w | |Click

Private Jub cmdExit_Click()
'unload and end program
Tnload e
End
End Sub

= £

€]

Figure 8.30 — Coding the Exit Button

Executing a Subroutine with the cmdDraw Command Button

In this program, we use a subroutine which is executed by the Draw command button, so type
the following code to execute the subroutine, CreateWasher

Private Sub cmdDraw_Click()

‘draw the Washer
CreateWasher

End Sub

icm(IDraw A:]]Click :j

Private ZJub cmdDraw Click() Ej
'draw the Washer

CreateWasher
End Sub| 1

Figure 8.31 — Coding the Draw Button

8-24

Written below is the entire program for creating the Washer.

Sub CreateWasher ()

‘Washer.dvb copyright (c) 2008 by Charles W. Robbins

'This program will open a dialogue box in AutoCAD, allow the user to enter a starting point (x, y z)
‘outside diameter (OD), inside diameter (ID) and width (W). The program will draw a front and side
‘view of the washer

'‘Define the point arrays, the variables, and entities

Dim objSs1 As AcadSelectionSet
Dim objDrawingObject As AcadEntity
Dim objMirroredObject As AcadEntity
Dim objLayer As AcadLayer

Dim objCircle As AcadCircle

Dim objLine As AcadLine

Dim objLinetype As AcadLineType
Dim objArrayedObject As AcadEntity
Dim OD As Double

Dim ID As Double

Dim W As Double

Dim P1(0 To 2) As Double

Dim P2(0 To 2) As Double

Dim P3(0 To 2) As Double

Dim P4(0 To 2) As Double

Dim P5(0 To 2) As Double

Dim P6(0 To 2) As Double

Dim P7(0 To 2) As Double

Dim P8(0 To 2) As Double

Dim P9(0 To 2) As Double

Dim P10(0 To 2) As Double

Dim x1 As Double

Dim x2 As Double

Dim x3 As Double

Dim x4 As Double

Dim x5 As Double

Dim x6 As Double

Dim y1 As Double

Dim y2 As Double

Dim y3 As Double

Dim z1 As Double

‘assigning values to the variables

OD = txtOD
ID = txtID
W = txtW
x1 = txtSpX

8-25

x2=x1+0D/2+W
x3=x2+4*W
x4=x3+2*W
x5=x4+W
x6=x5+2*W

y1 = txtSpY
y2=y1+ID/2
y3=y1+0D/2

z1 = txtSpZ

'point assignments and math

P1(0) = x2
P1(1) = y1
P1(2) = z1
P2(0) = x4
P2(1) = y1
P2(2) = z1
P3(0) = x1
P3(1) = y2
P3(2) = z1
P4(0) = x3
P4(1) =y3
P4(2) = z1
P5(0) = x4
P5(1) = y4
P5(2) = z1
P6(0) = x5
P6(1) = y1
P6(2) = z1

'Set variables

ThisDrawing.SetVariable "osmode", 0
ThisDrawing.SetVariable "ltscale", 0.5

'Load linetypes
On Error Resume Next
ThisDrawing.Linetypes.Load "hidden", "acad.lin"
On Error Resume Next
ThisDrawing.Linetypes.Load "center", "acad.lin"

'‘Create and set layer

Set objLayer = ThisDrawing.Layers.Add("Washer")
objLayer.color = acMagenta
objLayer.Linetype = "Continuous"

8-26

Set objLayer = ThisDrawing.Layers.Add("Hidden")
objLayer.color = acBlue
objLayer.Linetype = "Hidden"

Set objLayer = ThisDrawing.Layers.Add("Center")
objLayer.color = acGreen
objLayer.Linetype = "Center"

ThisDrawing.ActiveLayer = ThisDrawing.Layers("Washer")
‘Draw three line

Set objLine = ThisDrawing.ModelSpace.AddLine(P6, P7)
Set objLine = ThisDrawing.ModelSpace.AddLine(P7, P8)
Set objLine = ThisDrawing.ModelSpace.AddLine(P8, P5)

ThisDrawing.ActiveLayer = ThisDrawing.Layers("Hidden")

Set objLine = ThisDrawing.ModelSpace.AddLine(P9, P10)

'Mirror the line and arcs across vertical centerline

Set objSs1 = ThisDrawing.SelectionSets.Add("TempSS")
objSs1.Select (acSelectionSetAll)

For Each objDrawingObject In objSs1
Set objMirroredObject = objDrawingObject.Mirror(P3, P4)
objMirroredObject.Update

Next

objSs1.Delete

‘Draw center line
ThisDrawing.ActiveLayer = ThisDrawing.Layers("center")
Set objLine = ThisDrawing.ModelSpace.AddLine(P1, P2)

'Array the centerline around sp
ThisDrawing.Application.ZoomAll
Set objSs1 = ThisDrawing.SelectionSets.Add("TempSS")

objSs1.Select (acSelectionSetLast)

For Each objDrawingObject In objSs1
Set objArrayedObject = objDrawingObject.ArrayPolar(4, 2 * 3.14159265358979, P1)

objMirroredObject.Update

Next
objSs1.Delete

Set objLine = ThisDrawing.ModelSpace.AddLine(P3, P4)

8-27

‘Draw the circles
ThisDrawing.ActiveLayer = ThisDrawing.Layers("Washer")
Set objCircle = ThisDrawing.ModelSpace.AddCircle(P1, OD / 2)
Set objCircle = ThisDrawing.ModelSpace.AddCircle(P1, ID / 2)

End Sub
Private Sub cmdClear_Click()
‘clear the form
txtSpX =""
txtSpY =""
txtSpZ =""
txtw =""
txtOD = ""
txtiD=""
End Sub

Private Sub cmdDraw_Click()

‘draw the Washer
CreateWasher

End Sub

Private Sub cmdExit_Click()
‘unload and end program
Unload Me
End
End Sub

Inserting a Module into a Visual Basic Application

Insert a Module by selecting Insert on the
Menu Bar and select Module as shown in

8 Microsoft Visual Basic - G:\VYBA Prog

Figure 8.32. In the Project Menu, double click Irsert | Formet_Dobur
on the Module and type the following code. g Crocere.
J '8 UserForm
Sub DrawWasher () & Modue |
‘draw the Washer - 8% ACADProjec| &% Class Module
frmWasher.Show = 25 AutoCAD -
End Sub R Thisnw i

Figure 8.32 — Inserting a Module

The line of code, frmWasher.Show will display the form at the beginning of the program.

8-28

{General)

d:J |Dramﬂﬁasher

Sub DrawlWasher (]
'draw the Washer

frmilasher.3how
End Subl

Figure 8.33 — Coding the Module

Running the Program

After noting that the program is
saved, press the F5 to run the
Washer application. The Washer
window will appear on the graphical
display in AutoCAD as shown in
Figure 8.34.

Type the following data or
something similar into the textboxes
and select the Draw Command
Button to execute the program. To
exit the program, press the Exit
command button on the Washer
Program window. In AutoCAD, the
drawing of the finished Washer will
appear as shown in Figure 8.36.

Washer Program

e
Z
oD
ID
w

o—"

Draw ‘

Clear

Exit

Washer Program.dvb - Copyright 2008 by Charles Robbins. All Rights Reserved.

Figure 8.34 — Launching the Program

X| 4
Y| 4
Z| 0
OD| 4
ID| 25
W1 0.25

Figure 8.35 — Input Data

8-29

There are many variations of this
Visual Basic Application we can
practice and draw many single view —
orthographic drawings. While we
are practicing with forms, we can B
learn how to use variables, make
point assignments and draw just
about anything we desire. These are
skills that we want to commit to
memory.

w
i

L.,

Figure 8.36 — The Finished Draw

* World Class CAD Challenge 5-8 * - Write a Visual Basic Application that draws a
Washer with a front and right view by inputting data in a form. Complete the program in
less than 120 minutes to maintain your World Class ranking.

Continue this drill four times making other shapes and simple orthographic views with
lines and circles, each time completing the Visual Basic Application in less than 120
minutes to maintain your World Class ranking.

8-30

