
 2-1

C h a p t e r

2

Hello World Program

In this chapter, you will learn how to use the following Visual C#

Application functions to World Class standards:

 Opening Visual C# Editor

 Beginning a New Visual C# Project

 Laying Out a User Input Form in Visual C#

 Insert a Label into a Form

 Insert a Textbox into a Form

 Insert a Label into a Form to Post an Output

 Insert Command Buttons into a Form

 Adding a Copyright Statement to a Form

 Adding Comments in Visual C# to Communicate the Copyright

 Declaring Variables in a Program

 Setting Variables in a Program

 Using a Label to Communicate with Variables

 Ending the Program

 Running the Program

 2-2

Open the Visual C# Editor

To open the Visual C# Editor in Microsoft Visual Studio is essential to creating the program to

automate any process. In this version of the World Class CAD – Visual C#, we are using Visual

C# 2010.

To open a new project, we select New Project on the left side of the Start Page.

Figure 2.1 – The Start Page

We start a new Windows Application Project by picking the Windows under Visual C # in the

left pan of the New Project window. Then we pick Windows Form Application in the center

pane.

At the bottom of the Window, we name the project, Hello World. We make a folder for our

projects called Visual C Sharp on the desktop, on our flash drive or in the Documents folder.

We make another folder inside the first called Hello World Project. On the New Project

window, we browse to the Hello World Project location. The solution name is the same as the

project name.

 2-3

Figure 2.2 – New Project

The Hello World project opens

with the form ready to design.

 Figure 2.3 –The Hello World Program

 2-4

Beginning a New Visual C# Application

Remember, that all programming projects begin with one or more sketches. The sketch will

show labels, textboxes, and command buttons. In our first project, we will name the input form,

Hello World. We will place a textbox close to the top of the form to type a name. Over the top

of the textbox, we will insert the label, “Type your name”. We will have three command

buttons, Hello, Reset and Exit. On the bottom of the form, we will write the copyright

statement using another label. On this presentation, we can help ourselves by being as accurate

as possible, by displaying sizes, fonts, colors and any other specific details which will enable us

to quickly create the form. From the beginning of inserting the form into the project, we need to

refer to our sketch.

We should train new programmers

initially in the art of form building.

When using the editor, we insert

and size the form, and selecting

the Controls Toolbox, we will

place all the various input tools

and properly label them.

Whenever we place an input tool,

the properties window will display

a list of every attribute associated

with the tool, and we will take

every effort to arrange the tool by

performing such actions as

naming, labeling and sizing the

visual input device.

 Figure 2.4 – Sketch of the Hello World Form

Figure 2.5 – Designing the Hello World Form in Visual C#

 2-5

Laying Out a User Input Form in Visual C#

We will change the Text in the

Properties pane to Hello World to

agree with the sketch in Figure

2.4. Go ahead and change the form

in two other aspects, BackColor

and Size.

Alphabetic

BackColor Light Steel Blue

Size 320, 220

For the form size, the first number

is the width and the second

number is the height. The form

will change in shape to the size

measurement.

 Figure 2.6 – Setting BackColor and other Properties

The background color will change to a light blue. There are many more attributes in the

Properties pane that we will use on future projects.

Inserting a Label into a Form

A good form is easy to figure out

by the user, so when we are

attempting to provide information

on the window that will run in

Windows; we add labels to

textboxes to explain our intent.

Press the Label (A) button on the

Control Toolbar to add a label. To

size the label area, click on the

upper left area of the form and

hold down on the left mouse

button, draw the dotted label box.

 Figure 2.7 – Placing a Label on the Form

 2-6

We will name the Label using a

common Visual C# naming

convention where the

programming object is a three

letter prefix followed by the name

or phrase of the tool. For our first

label, the name is lblName.

Alphabetic

(Name) lblName

BackColor Light Steel Blue

Text Type your name:

Font Arial, 18 pt

On the sketch, the label’s caption

is “Type your name:” The font on

the sketch is 18 point, Arial. When

highlighting the row for Font, a

small command button with three

small dots appears to the right of

the default font name of Microsoft

San Serif. Click on the three dotted

button to open the Visual C# Font

window.

 Figure 2.8 – Changing the Font Property

We will select the Arial font,

Regular font style and 18 size for

this project to agree with the initial

sketch if the user input form.

When we adjust the attributes for

the label, these changes do not

alter globally for the other objects

on the form. If we wish to

underline the text or phrase in the

label, add a check to the Underline

checkbox in the Effects section of

the Font window. When we finish

making changes to the font

property, select the OK command

button to return to the work area.

 Figure 2.9 – The Font Window in Visual C#

 2-7

When the first label is done, the

background color of the label

matches the background color of

the form. In many cases that effect

is visually pleasing to the eye,

versus introducing another color.

Both color and shape will direct

the user in completing the form

along with the explanation we

place on the window to guide the

designer in using the automated

programs. Use colors and shape

strategically to communicate well.

 Figure 2.10 – The Finished Label on the Form

Inserting a Textbox into a Form

A textbox is used so that a user of

the computer program can input

data in the form of words, numbers

or a mixture of both. Press the

TextBox (ab) button on the

Control Toolbar to add a textbox.

To size the label area, click on the

upper left area of the form and

hold down on the left mouse

button, draw the dotted textbox.

 Figure 2.11 – Placing a TextBox on the Form

 2-8

We will name the TextBox using

the three letter prefix followed by

the name or phrase of the tool. For

our first textbox, the name is

txtName.

Alphabetic

(Name) txtName

Font Arial, 18 pt

Size 272, 35

The font on the sketch is 18 point,

Arial. When highlighting the row

for Font, a small command button

with three small dots appears to

the right of the default font name

of Microsoft San Serif. Click on

the three dotted button to open the

Visual C# Font window. Make the

changes like we did on the Label

and press OK to save the property.

 Figure 2.12 – Changing the (Name) to txtName

Inserting a Label into a Form to Post the Output

Some labels on a form are in a

position to display an answer after

the user inputs data and they press

the command button to execute the

application. To add this label,

press the Label (A) button on the

Control Toolbar to add a label. To

size the label area, click on the

upper left area of the form and

hold down on the left mouse

button, draw the dotted label box.

 Figure 2.13 – Placing another Label on the Form

 2-9

We will name the Label using the

name is lblGreeting.

Alphabetic

(Name) lblGreeting

BorderStyle None

Font Arial, 12 pt

Size 2,20

Text (blank)

The font on the sketch is 12 point,

Arial. When highlighting the row

for Font, a small command button

with three small dots appears to

the right of the default font name

of Microsoft San Serif. Click on

the three dotted button to open the

Visual C# Font window. Make the

changes as we did before and press

OK to save the property.

 Figure 2.14 – Changing the (Name) to lblGreeting

Inserting a Command Buttons into a Form

A command button is used so that

a user will execute the application.

Press the Command button on the

Control Toolbar to add a command

button. To size the label area, click

on the upper left area of the form

and hold down on the left mouse

button, draw the command button

as shown in Figure 2.15.

 Figure 2.15 – Insert a Command Button onto a Form

 2-10

We will name the command button

using the name is cmdHello.

Alphabetic

(Name) cmdHello

Text Hello

Font Arial, 12 pt

Size 80, 38

The font on the sketch is 18 point,

Arial. When highlighting the row

for Font, a small command button

with three small dots appears to

the right of the default font name

of Microsoft San Serif. Click on

the three dotted button to open the

Visual C# Font window. Make the

changes as we did before and press

OK to save the property.

 Figure 2.16 – Changing the (Name) to cmdHello

Add a second Command button,

named cmdReset is for clearing

the txtName and lblGreeting

objects. The third command button

is to exit the program. When the

user presses the Exit command

button, the application closes.

Notice the equal spacing between

the command buttons gives a

visually friendly appearance.

 Figure 2.17 – Insert Two More Command Buttons

 2-11

Adding a Copyright Statement to a Form

At the beginning of a new program, we will expect to see an explanation or any special

instructions in the form of comments such as copyright, permissions or other legal notices to

inform programmers what are the rules dealing with running the code. Comments at the

opening of the code could help an individual determine whether the program is right for their

application or is legal to use. The message box is a great tool when properly utilized to inform

someone if they are breaking a copyright law when running the code.

Finish the form with the following

copyright information.

hello world copyright (c) 2012 by
charles robbins

If there are special rules or

instructions that the user needs to

know, place that information on

the bottom of the form.

 Figure 2.18 – Adding a Copyright Statement

Adding Comments in Visual C# to Communicate the Copyright

The comments we placed in the first three lines of the program will inform the individual

opening and reading the code of the ownership. This is for those user that may run the

application without checking the label on the bottom of the form with the copyright

information. It is a great tool to alert the client to the rules of the program and tell them what the

application will do.

To begin the actual coding of the program, double click on the Hello command button. At the

top of the program just after the open bracket under namespace Hello_world, place the

following comments with two slashes (//). Remember, two slashes (//) will precede a comment

and when the code is compiled, comments are ignored.

Type the following line of code:

//Hello World copyright (c) 2012 by Charles W. Robbins
//This program will open a dialogue box, allow the user to type their name
//When the user clicks on the Hello button, a greeting, with the date and time is given

 2-12

Figure 2.19 – Adding a Copyright Statement

Declaring Variables in a Program

When we are going to use a number, text string or object that may change throughout the life of

the code, we create a variable to hold the value of that changing entity. In Visual C#, we will

begin our program by adding two variables to the portion of code that will run when the Hello

command button is clicked on. At each line of code, we will end it with a semicolon (;).

In our program, we will retrieve

the date and time from the

personal computer running the

application and place the values

in variables called date and

time.

Type the following code:

//declare variables
 String date;
 String time;

 Figure 2.20 – Declaring Variables with Dim Statements

Notice that the variable name should be a word or a phrase without spaces that represents the

value that the variable contains. If we want to hold a value of one’s date of birth, we can call the

 2-13

variable, DateofBirth. The keywords Date and Birth are in sentence case with the first letter

capitalized. There are no spaces in the name. Some programmers use the underscore character

(_) to separate words in phrases. This is acceptable, but a double underscore (__) can cause

errors if we do not detect the repeated character.

Setting Variables in a Program

Next, we will set the variables

using the equal function. We will

use the DateTime function to

capture the computer system date

and time. We use the now attribute

and we use the

now.GetDateTimeFormats('d')[0];

to assign the date and

now.GetDateTimeFormats('t')[0];

to assign the time.

 Figure 2.21 – Setting the Variables in the VBA Code

Type the following code for the variables:

//Set variables
DateTime now = DateTime.Now;
date = now.GetDateTimeFormats('d')[0];
time = now.GetDateTimeFormats('t')[0];

Using a Label to Communicate with Variables

The second message box is more difficult than the first, since we will incorporate the text

strings in quotes with the variables. To bring text together or to concatenate the sentence, we

will use the & character. When we want a space, we place a space in quotes “ ” or a period “.”

Go ahead and type the following code:

//display message
lblGreeting.Text = "Hello, " + txtName.Text + ". It is " + date + " at " + time;

 2-14

Figure 2.22 – Computing the Greeting with String Concatenation

The “Hello, ” + txtName.Text is concatenated with the + sign. We can use multiple + signs to

add text strings and variables containing text together. The string variable date and time are

added into the message, so we can state the day and time of the greeting.

Resetting the Data

To clear the textbox or label containing the greeting, we will set the textbox for Name,

txtName.text property to a blank entry by using the equal sign “=” and the null string.Empty.

This makes the property blank. We will set the label for Greeting, lblGreeting.text property to a

blank entry by using the equal sign “=” and the null string string.Empty, and this will make that

property blank, also. Notice that after the control object name the dot (.) separates the suffix

which is the name of the property for that object.

 //Reset the Greeting label and Name textbox
 lblGreeting.Text = string.Empty;
 txtName.Text = string.Empty;

We can also use the lblGreeting.Text = “”; with two quotes and we would accomplish the same

thing.

 2-15

Figure 2.23 – Computing the Reset Button by Clearing a Textbox and Label Caption

Exiting the Program

Figure 2.24 – Exiting the Program

To exit this program, we will unload the application and end the program.

Type the following code:

//Unload and exit the program
Application.Exit()

 2-16

Running the Program

After noting that the program is

saved, press the F5 to run the

Hello World application. The

Hello World window will appear

on the graphical display as shown

in Figure 2.25. Notice the

professional appearance and

presentation of information in a

clean dialogue box. The color of

the background is neither black

nor white, which would match the

normal graphical display colors

used by designers.

 Figure 2.25 – Launching the Program

Type your name in the textbox just

as we typed the name “Lisa” as

shown in Figure 2.26. If we make

a mistake, we can type over the

text entry or press the Reset

command button to clear the

textbox. Press the Hello command

button and a greeting is displayed

like “Hello, Lisa. It is 8:37:31 on

05-03-2011 shown in Figure 2.26.

After experimenting with our

program, press the Exit command

button to exit the application.

 Figure 2.26 – Running the Program

If our program does not function correctly, go back to the code and check the syntax against the

program shown in Figure 2.24. Repeat any processes to check or Beta test the program. When

the program is working perfectly, save and close the project.

There are many variations of this Visual C# Application we can practice and obtain information

from a personal computer. While we are practicing with forms, we can learn how to use

variables, strings and comments. These are skills that we want to commit to memory.

 2-17

* World Class CAD Challenge 190-1 * - Write a Visual C# Application that displays a

single input form, allow the user to type in their name, and when executed, the program

will greet the user with information obtained from the computer.

Continue this drill four times using some other form designs, each time completing the

Visual C# Project in less than 1 hour to maintain your World Class ranking.

