
5-1

C h a p t e r

5

Visual C#: Condition

Statement

In this chapter, you will learn how to use the following Visual C#

functions to World Class standards:

 Writing Condition Statements in Visual C#

 Opening Visual C# Editor

 Beginning a New Visual C# Project

 Laying Out a User Input Form in Visual C#

 Insert a Label into a Form

 Insert a Textbox into a Form

 Insert Command Buttons into a Form

 Adding a Copyright Statement to a Form

 Adding Comments in Visual C# to Communicate the Copyright

 Declaring Variables in a Program

 Setting Variables in a Program

 Using a Label to Communicate with Variables

 Determining a String Length with the Function

 Using a Loop with the While Function

 Remove a Character from a String

 Changing a Character to ASCII

 Testing a Case with the If -Then Function

 Adding One to the Counter in the Loop

 Using More If-Then Functions

 Resetting the Data

 Exiting the Program

 Running the Program

5-2

Writing Condition Statements in Visual C#

When a person comes to an intersection in a road, they have a decision to make whether to turn

right or to turn left or maybe just go straight ahead. In programming, we need to make the same

type of decision based upon a test. Back at the road, if we wanted to go to the store, possibly we

would turn to the right. If we wanted to visit a friend, then maybe we will choose the left turn or

finally we want to head on home and we go straight. Back to the program, in this chapter, we

will learn how to write if-then statements to test whether a password meets the complexity level

and the string length to meet the strong password criteria.

The definition of a strong password is that the string of characters needs to meet three of the

following conditions. At least one character needs to be uppercase. At least one character needs

to be lower case. At least one character needs to be a number. At least one character should be

a special character such as question mark, exclamation mark, dash or And sign (?, !, -, &). The

password should be at least seven characters in length. Meeting the length requirement and

three out of the four types of characters conditions make the string of text a strong password.

A method that we can use in doing the test is to remove a single character at a time from the

password string and make four tests, one for each condition. By passing a single test, we will

change a variable named for that particular test to a “1” or On state. For example, if our

password is “WorldClassCAD” and we remove the capital W, in one test we would say if the

W falls between the capital A and capital Z, then we will change the variable named Uppercase

from zero to one. Below, we show an example of this code.

 'Test for uppercase
 If holder>=65 and holder<= 90 then
 uppercase = 1
 End If

We will test all four conditions on each letter, knowing that only one condition will change. As

we continue with our testing in another example, we will test the next letter, the o from the

password “WorldClassCAD”. In one test for the letter o, we would say if the o falls between

the lowercase a and lowercase z, then we will change the variable named Lowercase from zero

to one. As we continue testing through the password, we can see only the Uppercase and

Lowercase variables will change to the On state and the other two variables, Special and

Number will remain zero or Off. Even though the password “WorldClassCAD” has thirteen

characters and is strong in length, however this password is not strong because it has only met

two out of four character conditions.

We will use if-then statements to construct the text to announce whether the string of characters

does or does not meet the strong password criteria. If we find a password to be lacking in one

or more conditions, we will use the same type of decision statement to construct a sentence like

"Make at least one character uppercase". We will concatenate sentences together then broadcast

them using a message box. This program is practical and helps us to develop specialized skills

and since there are multiple lines of code in this project that gives us a better chance to

remember this useful skill. The if-then statement will become a cornerstone function and every

one of our programs throughout a career will likely use this function.

5-3

We still will use message boxes, declare variables, and assign values to variables just as we did

in the previous chapters. We want to start the learning process using the skills we learned in

chapter 2 and 3, so in this chapter, we will start first by using those message and input boxes. So

let’s get started.

Open the Visual C# Editor

In this lesson, we will step through each procedure in adding labels, textboxes and command

buttons and we will integrate them into the tutorial along with condition statements, a while

loop and message boxes. As in every project, we will create variables, set their values, use

functions to manipulate the data and output data.

To open a new project, we select New Project from the left side of the Microsoft Visual Studio

window.

Figure 5.1 – The Start Page

5-4

Figure 5.2 – New Project

We start a new Windows Application Project by picking the Windows under Visual C # in the

left pan of the New Project window. Then we pick Windows Form Application in the center

pane.

At the bottom of the Window, we name the project, Password Checker. We make a folder for

our projects called Visual C Sharp on the desktop, on our flash drive or in the Documents

folder. We make another folder inside the first called Password Checker. On the New Project

window, we browse to the Password Checker location. The solution name is the same as the

project name.

Beginning a New Visual C# Application

Remember, that all programming projects begin with one or more sketches. The sketch will

show labels, textboxes, and command buttons. In this project, we will name the input form,

Password Checker. We will have a label that explains the strong password rules. We will have a

textbox to key in the password. We will have three command buttons, Check, Reset and Exit.

On the bottom of the form, we will write the copyright statement using another label. On this

presentation, we can help ourselves by being as accurate as possible, by displaying sizes, fonts,

colors and any other specific details which will enable us to quickly create the form. On this

5-5

form, we will use a 12 point Arial font. From the beginning of inserting the form into the

project, we need to refer to our sketch.

We should train new programmers

initially in the art of form building.

When using the editor, we insert

and size the form, and selecting the

Controls Toolbox, we will place all

the various input tools and properly

label them. Whenever we place an

input tool, the properties window

will display a list of every attribute

associated with the tool, and we

will take every effort to arrange the

tool by performing such actions as

naming, labeling and sizing the

visual input device.

 Figure 5.3 – Sketch of the Password Checker Form

Figure 5.4 – Designing the Password Checker Form in Visual C#

5-6

Laying Out a User Input Form in Visual C#

We will change the Text in the

Properties pane to Password

Checker to agree with the sketch in

Figure 5.3. Go ahead and change

the form in two other aspects,

BackColor and Size.

Alphabetic

Font Arial, 16 pt

Size 600, 300

The first number is the width and

the second number is the height.

The form will change in shape to

the size measurement.

 Figure 5.5 – Setting the Form Properties

The background color will change to a white. There are many more attributes in the Properties

pane that we will use on future projects.

In this project, we will select the

font in the form. By selecting the

font, font style and size for the

form, each label, textbox and

command button we insert will

have these settings for their font.

When highlighting the row for

Font, a small command button with

three small dots appears to the right

of the default font name of

Microsoft San Serif. Click on the

three dotted button to open the

Visual C# Font window.

 Figure 5.6 – The Font Window in Visual C#

5-7

We will select the Arial font,

Regular font style and 16 size for

this project to agree with the initial

sketch if the user input form. If we

wish to underline the text or

phrase in the label, add a check to

the Underline checkbox in the

Effects section of the Font

window. When we finish making

changes to the font property, select

the OK command button to return

to the work area.

 Figure 5.7 – Changing the Font to Arial

Inserting a Label into a Form

A good form is easy to figure out by the user, so when we are attempting to provide information

on the window that will run in Windows; we add labels to textboxes to explain our intent. Press

the Label (A) button on the Control Toolbar to add a label. To size the label area, click on the

upper left area of the form and hold down on the left mouse button, draw the dotted label box.

When the first label is done, the background color of the label matches the background color of

the form. In many cases that effect is visually pleasing to the eye, versus introducing another

color. Both color and shape will direct the user in completing the form along with the

explanation we place on the window to guide the designer in using the automated programs.

Use colors and shape strategically to communicate well.

We will insert our first Label on the

upper left corner of the form and

call the entity lblRule.

Alphabetic

(Name) lblRule

AutoSize False

Text A smart password has at

least 6 characters with

one of the three of the

following types of

characters; capital

letters, lower case letters,

numbers and special

characters

 Figure 5.8 – The Finished Label on the Form

5-8

Inserting a Textbox into a Form

A textbox is used so that a user of

the computer program can input

data in the form of words, numbers

or a mixture of both. Press the

TextBox (ab) button on the

Control Toolbar to add a textbox.

To size the label area, click on the

upper left area of the form and

hold down on the left mouse

button, draw the dotted textbox.

 Figure 5.9 – Placing a TextBox on the Form

We will name the TextBox using

the three letter prefix followed by

the name or phrase of the tool. For

our first textbox, the name is

txtPassword.

Alphabetic

(Name) txtPassword

Size 556,39

Text Type Password Here

TextAlign Center

The size of the textbox will be 560

wide and 39 tall and the characters

inside the textbox will be aligned

in the center.

 Figure 5.10 – Setting the Size of the Textbox

5-9

Inserting a Command Buttons into a Form

A command button is used so that a user will execute the application. Press the Command

button on the Control Toolbar to add a command button. To size the label area, click on the

upper left area of the form and hold down on the left mouse button, draw the command button.

We will name the command button

using the name is cmdCheck.

Alphabetic

(Name) cmdCheck

Caption Check

Font Arial, 15.75 pt

Size 127,45

 Figure 5.11 – The Command cmdCalculate Button

Add a second Command button;

named cmdReset is for clearing

the txtPassword object. The third

command button is to exit the

program. When the user presses

the Exit command button, the

application closes. Notice the

equal spacing between the

command buttons gives a visually

friendly appearance.

 Figure 5.12 – Insert Two More Command Buttons

Adding a Copyright Statement to a Form

At the beginning of a new program, we will expect to see an explanation or any special

instructions in the form of comments such as copyright, permissions or other legal notices to

inform programmers what are the rules dealing with running the code. Comments at the

opening of the code could help an individual determine whether the program is right for their

application or is legal to use. The message box is a great tool when properly utilized to inform

someone if they are breaking a copyright law when running the code.

5-10

Finish the form with the following

copyright information.

Password Checker - Copyright (c)
2011 by charles robbins

If there are special rules or

instructions that the user needs to

know, place that information on

the bottom of the form.

 Figure 5.13 – Adding a Copyright Statement

Adding Comments in Visual C# to Communicate the Copyright

The comments we placed in the first three lines of the program will inform the individual

opening and reading the code, but those user that may run the application without checking, the

label on the bottom of the form with the copyright information is a great tool to alert the client

to the rules of the program and what will the application do.

To begin the actual coding of the program, double click on the Hello command button. At the

top of the program and before the line of code with Private Sub cmdCheck_Click (), place the

following comments with the single quote (‘) character. Remember, the single quote character

(‘) will precede a comment and when the code is compiled, comments are ignored.

Type the following line of code:

//Password_checker - Copyright (c) 2007 by Charles W. Robbins
//this program will check the password against complexity requirements and length

Figure 5.14 – Adding a Copyright Statement

5-11

Declaring Variables in a Program

When we are going to use a number, text string or object that may change throughout the life of

the code, we create a variable to hold the value of that changing entity. In this Visual C#

program, we will declare a local variable in the cmdCheck subroutine.

In our program, we will retrieve the data from the textboxes and also we will create data from

mathematical computations. These variables will hold numbers for calculations so we will

declare them as Integers.

Type the following code under the cmdCheck subroutine of the program.

 //Declare variable
 int counter;
 int holder1;
 int uppercase;
 int lowercase;
 int number;
 int special;
 int pwdlength;
 int check;
 string password;
 string character;
 string msg1;
 string msg2;
 string msg3;
 string msg4;
 string msg5;

Figure 5.15 – Declaring Variables with Dim Statements

Notice that the variable name should be a word or a phrase without spaces that represents the

5-12

value that the variable contains. If we want to hold a value of one’s date of birth, we can call the

variable, DateofBirth. The keywords Date and Birth are in sentence case with the first letter

capitalized. There are no spaces in the name. Some programmers use the underscore character

(_) to separate words in phrases. This is acceptable, but a double underscore (__) can cause

errors if we do not detect the repeated character.

Setting Variables in a Program

Next, we will set the variables using the equal function. We will set the characters in the

textbox to the password variable and we will set the number, uppercase, lowercase, special and

counter to zero. We also assign null values to the strings msg1 through msg5.

Type the following code under the “set variable” section of the cmdCheck subroutine of the

program.

 //Set variables
 password = txtPassword.Text;
 number = 0;
 uppercase = 0;
 lowercase = 0;
 special = 0;
 counter = 0;
 msg1 = "";
 msg2 = "";
 msg3 = "";
 msg4 = "";
 msg5 = "";

Figure 5.16 – Setting the Variables in the VBA Code

5-13

Determining a String Length

When we want to find how many characters are in a text string then we will use the length

function. In a simple case, like with the word “test”, the answer the “test”.length is 4. When

there is a space in the text string, like “easy coding” then “easy coding”.length is 11. The space

counts in the computation of the text string length. Type the following code in the program.

 //Determine password length
 pwdlength = password.Length;

Using a Loop with the While Function

Many years ago I brought a class of students through the steps of creating while loops in their

computer programs. In that exercise, I had the students create a basement stairs completely from

scratch using a visual program. The problem involved some mathematics, the knowledge of

selections sets, and of course the while loops. I would have to say that most of the students

really struggled through the exercise with me. My approach was too difficult. My challenge was

to find a technique to train powerful programming functions and simultaneously allowing the

programming student to concentrate on coding.

The next group going through the lesson plan for while loops at the college, I still used a step

with a run of 10 inches in a rise of the 8 inches. We repeated the single step ten times to

construct a simple looking stairs. We drew a ball and bounced it down the stairs using the while

loop. They enjoyed the simplicity of the assignment and went on to make very nice looking

animations. In our first while loop in Visual C#, we are going to remove a single letter and test

the character four times. Sounds pretty effortless and through simplicity we learn how to use

another useful tool.

When we are using a Do While Loop function in a Visual C#, right after the words Do While

we will place a test statement that will be used by the Do While function each time to determine

whether to enter or exit the loop. In our example and in most of our programs, we will use the

counter. We set the variable counter previously to zero. We know the number of characters in

the password which is held in the variable “length”. The test is simple. We will stay in the loop

as long as the variable counter is less than length.

If the password is 13 characters long, the first time into the loop the condition is (< 0 13) which

is true so all of the expression inside the while loop will be read in the program. The second

time into the loop the condition is (< 1 13) which is also true so all the loop continues to run.

The third time into the loop the condition is (< 2 13) which is also true and the loop continues.

The fourth time into the loop the condition is (< 3 13) which is also true and this seems to be

going on and on.

In a classroom we go through every step on our first while loop. By this time many students do

not think this will ever end. The thirteenth time into the loop the condition is (< 12 13) which is

5-14

also true, because 12 is less than 13. Now on fourteenth time into the loop the condition is (< 13

13) which is false and so the while loop will not execute and the next expression in the code

will be read.

Start the while loop by typing the following.

 while (counter < pwdlength)
 {

Remove a Character from a String

Once inside the loop, we need to extract a single letter at a time from the password in order to

test the letter against the strong password criteria. We will do this operation by using the left

function. The left function is set up as shown below.

 //Check password
 character = password.Substring(0, 1);

We type the name character, which is a variable name that will hold a single character and then

an equal sign. After entering the variable name password which hopefully contains seven or

more characters, we type a dot and the substring function. Then comes an open parentheses.

Now to retrieve the first character, we will type zero in the first character will be taken from the

password. The second number (1) is the string length. The line of code ends with a closed

parentheses.

Someday, we may want to use this function for other purposes so we should know that we can

modify this same line of code to

character = password.substring(0,3)

And then the variable character will contain the first three letters of the password text string.

Changing a Character to ASCII

Another easy function to learn to use is the ASCII tool. We named the variable holder1 because

we are just translating the keyboard character extracted from the password to a numeric code.

Americans Standard Code for Information Interchange or ASCII format has the number that

designation for every keyboard character. Type the following code.

 char c = character[0];
 holder1 = System.Convert.ToInt32(c);

The reason we are changing the extracted character from the password to a numeric value is so

that we can be easily compare this translated value to a range of numeric values that represent

uppercase letters, lowercase letters, numbers and special characters. In the ASCII appendix of

5-15

this text, we can see that the numeric range of uppercase letters is from 65 to 90. In the same

table, we see that numeric arrange for lowercase letters to be from 97 to 122. Again, the table

shows the range zero to nine on the keyboard to be from 48 to 57. For special characters, we

will use an exact numbers to check the single extracted character. This is a very easy technique

to use in programming.

Testing a Case with the If -Then Function

Whenever we are confronted with making a choice between two or more options in a computer

program, then the if-then function becomes a very popular solution to this challenge. The if-

then function will execute the statements within the then section of the if-then expression when

the logical test is true. The if-then function also will execute the else section of the if-then

expression when the logical test is false.

The if-then function is arranged to work in a more complex fashion than other Visual C# tools.

If is initially, and after that an expression containing the logical test is written right after the if.

The logical expression tests for a true or false response. In this program, the test is whether the

ASCII number in the variables holder1 is greater or equal to 65 and less or equal to 90. If the

answer is true, then the variable uppercase is assigned the value of one. If the answer is false,

then the variable uppercase remains a zero as assigned earlier in the program.

So type the following expression in the routine:

 //Test for uppercase
 if (holder1 >= 65)
 {
 if (holder1 <= 90)
 {
 uppercase = 1;
 }
 }

In our first if-then statement, we are not going to use the else section of the function. If we

needed to execute a statement for a false return, we would use the else section of the function.

In this program, we get to practice our first if-then statements another three times. Type the

following lines of code to test the single extracted character for lowercase, number and special

character conditions.

The test case in the if-then statement has an And function. The test case is

holder>=65 and holder<= 90

where the ASCII number holding variable has to be greater than or equal to 65 and less than or equal to
90. When we need an And function, we write two if then statements in succession.

5-16

 //Test for lowercase
 if (holder1 >= 97)
 {
 if (holder1 <= 127)
 {
 lowercase = 1;
 }
 }

 //Test for number
 if (holder1 >= 48)
 {
 if (holder1 <= 57)
 {
 number = 1;
 }
 }

 //Test for special character
 if (holder1 == 21 || holder1 == 36 || holder1 == 45 || holder1 == 63)
 {
 special = 1;
 }

In the test case in the if-then statement has an Or function. The test case is

 if (holder1 == 21 || holder1 == 36 || holder1 == 45 || holder1 == 63)

where the ASCII number holding variable has to be equal to 21 or 36 or 45 or 63. When we need an Or
function, we write two || vertical bars in the if then statements as shown.

Removing Single Character at a Time

The mid function will work wonders for us if we know how to use this text handling function.

By typing a comma and a number after the variable password, we can extract just about any

part of a text string that we wish. In this case we will extract all the characters after the first

character. When we leave the next integer or whole number off after the 2 in the line of code:

 password = password.Substring(1);

then all remaining characters are extracted

5-17

Adding One to the Counter in the Loop

Now, we need to discuss the properties of a programming loop. The easiest technique we have

demonstrate this concept is to take a small group of students and form a circle. We identify the

beginning of the circle to be one person and we give them the value of 0 and they say out load

“zero”. Each person passes the marker around clockwise until a student hands the first person

the same marker back. Now in order to make a basic programming loop function properly, we

will add one to the beginning value, so the first person announces “one” and continues to pass

the marker around the group again. The next time the first person receives the marker they have

figured out the game by now, and states “two”. To allow this to become common place in their

programming skill set, typically while we are discussing the writing of the Adding expression,

we allow them to continue until the entire group is tired of passing the marker in a circle and

hearing the count by ones, but finally someone will ask how to stop the loop. That will be

another discussion with another function, but remember where you heard about loops first,

using the adding function. Okay, we can stop counting, now.

The next expression we will place in the code will add one to the variable counter. We will use

the adding function to add 1 to the counter, so the variable counter will now be 1.

counter = counter + 1;

At the end of the Do While loop type Loop. At this point of the program the computer will

return to the initial starting point and the test in the Do While case will be run again. The loop

will continue until the case is false.

Using More If-Then Functions

After exiting the Do While loop, we will check the password to see if the text string meets the

four criteria. Type the following code as shown.

 //Check the password
 check = uppercase + lowercase + number + special;

Our strategy is to have the variable check equal to 3 or more, which means that the password

has met the 3 out of 4 types of characters.

Next, we will test for the password length. We captured his piece of information earlier before

entering the loop. If the text string is less than seven characters long, then we will construct a

message recommending at least a seven character text string.

 //Check the password for length
 check = uppercase + lowercase + number + special;

5-18

 if (pwdlength < 7)
 {
 msg1 = "Make the password at least 7 characters long. ";
 }

We will now check each value of the test variables to see if they are equal to zero and if they

are, we will make a recommendation to change the password for this consideration.

Type the following code where we will assign a sentence to a message named msg2, msg3,

msg4 and msg5. We will use the messages in the last message box informing the user of the

results of the program.

 //Check the password for uppercase letters
 if (uppercase == 0)
 {
 msg2 = "Make at least one character uppercase. ";
 }
 //Check the password for lowercase letters
 if (lowercase == 0)
 {
 msg3 = "Make at least one character lowercase. ";
 }
 //Check the password for numbers
 if (number == 0)
 {
 msg4 = "Make at least one character a number. ";
 }
 //Check the password for special characters
 if (special == 0)
 {
 msg5 = "Make at least one character a special character. ";
 }

In the last if-then statement, we will use and else section to announce that the password is not

strong and to construct the messages from the previous section to what changes should be made.

In this statement the case is

check>=3 and length>=7

and if the answer is True then the

"Password is strong"

Type the following code as shown.

5-19

 if (check >= 3)
 {
 if (pwdlength >= 7)
 {
 MessageBox.Show("Password is strong");
 }
 }

If the answer is not true then we use the Else function to develop our message.

 else
 {
 MessageBox.Show("Password is not strong. " + msg1 + msg2 + msg3 + msg4 + msg5);
 }
 }

We will use + to concatenate the four test messages to the first sentence “Password is not

strong.”

Resetting the Data

To clear the textboxes or labels containing the data, we will replace the date with blank strings

and the date and time with the current day and time setting.

Type the following code under the cmdReset subroutine of the program

 //Reset the password textbox
 txtPassword.Text = "Type Password Here"

Figure 5.17 – Computing the Reset Button by Clearing a Textbox

5-20

Exiting the Program

Figure 5.18 – Exiting the Program

To exit this program, we will unload the application and end the program.

Type the following code:

//Unload and exit the program
 Application.Exit();

Written below is the entire Password_checker.vbs code for your benefit.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Password_Checker
{
 //Password_checker - Copyright (c) 2007 by Charles W. Robbins
 //this program will check the password against complexity requirements and length

 public partial class frmPasswordChecker : Form
 {
 public frmPasswordChecker()
 {
 InitializeComponent();
 }

5-21

 private void cmdCheck_Click(object sender, EventArgs e)
 {
 //Declare variable
 int counter;
 int holder1;
 int uppercase;
 int lowercase;
 int number;
 int special;
 int pwdlength;
 int check;
 string password;
 string character;
 string msg1;
 string msg2;
 string msg3;
 string msg4;
 string msg5;

 //Set variables
 password = txtPassword.Text;
 number = 0;
 uppercase = 0;
 lowercase = 0;
 special = 0;
 counter = 0;
 msg1 = "";
 msg2 = "";
 msg3 = "";
 msg4 = "";
 msg5 = "";

 //Determine password length
 pwdlength = password.Length;

 while (counter < pwdlength)
 {

 //Check password
 character = password.Substring(0, 1); ;

 char c = character[0];
 holder1 = System.Convert.ToInt32(c);

5-22

 //Test for uppercase
 if (holder1 >= 65)
 {
 if (holder1 <= 90)
 {
 uppercase = 1;
 }
 }

 //Test for lowercase
 if (holder1 >= 97)
 {
 if (holder1 <= 127)
 {
 lowercase = 1;
 }
 }

 //Test for number
 if (holder1 >= 48)
 {
 if (holder1 <= 57)
 {
 number = 1;
 }
 }

 //Test for special character
 if (holder1 == 21 || holder1 == 36 || holder1 == 45 || holder1 == 63)
 {
 special = 1;
 }

 password = password.Substring(1);
 counter = counter + 1;
 }

 //Check the password for length
 check = uppercase + lowercase + number + special;

 if (pwdlength < 7)
 {
 msg1 = "Make the password at least 7 characters long. ";
 }

5-23

 //Check the password for uppercase letters
 if (uppercase == 0)
 {
 msg2 = "Make at least one character uppercase. ";
 }
 //Check the password for lowercase letters
 if (lowercase == 0)
 {
 msg3 = "Make at least one character lowercase. ";
 }
 //Check the password for numbers
 if (number == 0)
 {
 msg4 = "Make at least one character a number. ";
 }
 //Check the password for special characters
 if (special == 0)
 {
 msg5 = "Make at least one character a special character. ";
 }

 if (check >= 3)
 {
 if (pwdlength >= 7)
 {
 MessageBox.Show("Password is strong");
 }
 }
 else
 {
 MessageBox.Show("Password is not strong. " + msg1 + msg2 + msg3 + msg4 + msg5);
 }
 }

 private void cmdReset_Click(object sender, EventArgs e)
 {
 txtPassword.Text = "Type Password Here";
 }

 private void cmdExit_Click(object sender, EventArgs e)
 {
 //Unload and exit the program
 Application.Exit();
 }
 }
}

5-24

Running the Program

After noting that the program is

saved, press the F5 to run the

Password Checker application.

The Password Checker window

will appear on the graphical

display as shown in Figure 5.19.

Notice the professional appearance

and presentation of information in

a clean dialogue box.

 Figure 5.19 – Launching the Program

Type the password “A1B2C3d4”

as shown in Figure 5.20. If we

make a mistake, we can type over

the text entry or press the Reset

command button to clear the

textbox. Press the Check command

button and a message box will tell

us if the password is strong and if

it is not, how to fix the passphrase.

After experimenting with our

program, press the Exit command

button to exit the application.

 Figure 5.20 – Running the Program

When we check the password, we

get the “Password is strong”

message.

 Figure 5.21 – A Message Box Appears

5-25

Now, we type the password

“WorldClassCAD” as shown in

Figure 5.22. Press the Check

command button and a message

box will tell us if the password is

strong and if it is not, how to fix

the passphrase.

 Figure 5.22 – Enter another Password

When we check the password, we

get the “Password is not strong”

message, that we need a number

and a special character.

 Figure 5.23 – A Message Box Appears

If our program does not function correctly, go back to the code and check the syntax against the

program shown in previous sections. Repeat any processes to check or Beta test the program.

When the program is working perfectly, save and close the project.

There are many variations of this Visual C# Application we can practice and obtain information

from a personal computer. While we are practicing with forms, we can learn how to use

variables, strings and comments. These are skills that we want to commit to memory.

* World Class CAD Challenge 90-4 * - Write a Visual C# Application that displays a

single input form, allows the user to type in their data, and when executed, the program

will give the user information obtained from the computer and from mathematical

computations.

Continue this drill four times using some other form designs, each time completing the

Visual C# Project in less than 1 hour to maintain your World Class ranking.

