
 6A-1

C h a p t e r 6A

Visual C# Program:
Simple Game

In this chapter, you will learn how to use the following Visual C#
Application functions to World Class standards:

 Opening Visual C# Editor
 Beginning a New Visual C# Project
 Laying Out a User Input Form in Visual C#
 Inserting a Label into a Form
 Adding a PictureBox in Visual C#
 Adding Comments in Visual C# to Communicate to Others
 Declaring Variables in a Program with the Int Statement
 Setting Variables in a Program
 Adding a Timer to the Program
 Programming for the Timer
 Running the Program

 6A-2

Open the Visual C# Editor

In this lesson, we will write our first game. We will find that this kind of program requires
constant input from the user and so there are new functions for us to learn. Some of the C# code
will be similar to the syntax written in Chapter 5. In our first game, we will launch a ball from
the upper left area of the window and we will try to keep the ball from passing the imaginary
line just equal to the paddle and if it does, we will lose a life. We gain points by hitting the ball
back up to the top of the window where it will ricochet and return to us on another route. The
number of lives remaining will be posted on the top of the window and if we lose our last life,
the game over text will appear and the game will conclude.

To open this new project, we select File on the Menu Bar and New Project.

Figure 6A.1 – The Start Page

To open a new project, we select New Project on the left side of the Start Page.

 6A-3

Figure 6A.2 – New Project

We start a new Windows Application Project by picking the Windows under Visual C # in the
left pan of the New Project window. Then we pick Windows Form Application in the center
pane.

At the bottom of the Window, we name the project, Simple Game Program. We make a folder
for our projects called Visual C Sharp on the desktop, on our flash drive or in the Documents
folder. We make another folder inside the first called Simple Game Program. On the New
Project window, we browse to the Simple Game Program location. The solution name is the
same as the project name.

Beginning a New Visual C# Application

Remember, that all programming projects begin with one or more sketches. The sketch will
show labels and pictures. In this project, we will name the input, Simple Game. In this
application, we will just have a form.

 6A-4

We will write code that moves a
maroon ball from the upper left
corner starting at the 1,1 location.
We will displace the ball 1 pixel to
the right and 1 pixel down for each
tick of time on the timer. We will
have a horizontal image for a
paddle to stop the ball from going
by us. We will add a label for three
lives and another for keeping the
score. We will gain a point for
every time the ball is returned
upward and the game will continue.
The name of the game and the title
of the score boxes are in three
labels.

 Figure 6A.3 – Sketch of the Simple Game Form

If the player loses all of their lives, we will have a label that says “Game Over” appear at the
bottom of the window and the game will conclude.

Figure 6A.4 – Designing the Simple Game Form in Visual C#

 6A-5

Laying Out a User Input Form in Visual C#

We will change the Text in the
Properties pane to Simple Game to
agree with the sketch in Figure
6A.3. Go ahead and change the
form in two other aspects,
BackColor and Size.

Alphabetic
BackColor White
Size 600, 400

The first number is the width and
the second number is the height.
The form will change in shape to
the size measurement.

 Figure 6A.5 – Setting the Form Properties

The background color will change to a white. There are many more attributes in the Properties
pane that we will use on future projects.

In the Solution Explorer pane, right click on Form1.cs and rename it to frmSimpleGame.cs.

Inserting a Label into a Form

A good form is easy to figure out
by the user, so when we are
attempting to provide information
on the window that will run in
Windows; we add labels to
textboxes to explain our intent.
Press the Label (A) button on the
Control Toolbar to add a label. To
size the label area, click on the
upper left area of the form and
hold down on the left mouse
button, draw the dotted label box.

 Figure 6A.6 – Placing a Label on the Form

 6A-6

We will name the Label using a
common Visual C# naming
convention where the
programming object is a three
letter prefix followed by the name
or phrase of the tool. For our first
label, the name is lblLivesLabel.

Alphabetic
(Name) lblLivesLabel
BackColor White
Font Arial, 16 pt
Text Lives

On the sketch, the label’s caption
is “Lives” The font on the sketch
is 16 point, Arial Narrow. When
highlighting the row for Font, a
small command button with three
small dots appears to the right of
the default font name of Microsoft
San Serif. Click on the three dotted
button to open the Visual C# Font
window.

 Figure 6A.7 – Changing the Font Property

We will select the Arial font,
Regular font style and 16 size for
this project to agree with the initial
sketch if the user input form.
When we adjust the attributes for
the label, these changes do not
alter globally for the other objects
on the form. If we wish to
underline the text or phrase in the
label, add a check to the Underline
checkbox in the Effects section of
the Font window. When we finish
making changes to the font
property, select the OK command
button to return to the work area.

 Figure 6A.8 – The Font Window in Visual C#

 6A-7

When the first label is done, the
background color of the label
matches the background color of
the form. In many cases that effect
is visually pleasing to the eye,
versus introducing another color.
Both color and shape will direct
the user in completing the form
along with the explanation we
place on the window to guide the
designer in using the automated
programs. Use colors and shape
strategically to communicate well.

 Figure 6A.9 – The Finished Label on the Form

We will call the label for the score
lblScore and we will make the text
state “score”.

Alphabetic
(Name) lblScoreLabel
BackColor White
Font Arial, 16 pt
Text Score

The next label is for the name
Ricochet which is lblName.

Alphabetic
(Name) lblName
BackColor White
Font Mistral, 36 pt
ForeColor Maroon
Text Ricochet

 Figure 6A.10 – The Finished Labels on the Form

We will add two labels that will hold the number of lives and our score. We will position these
labels under their identifiers and they will hold their initial number, 3 for lives and 0 for our
score. We will place the last label in a position below the paddle and in the center.

 6A-8

Alphabetic
(Name) lblScore
Border Fixed Single
BackColor White
Font Arial, 16 pt
Text 0

Alphabetic
(Name) lblLife
Border Fixed Single
BackColor White
Font Arial, 16 pt
Text 3

Alphabetic
(Name) lblGameOver
BackColor White
Font Arial, 16 pt
Text (blank)

 Figure 6A.11 – Placing a Labels on the Form

After typing in Game Over for the last label, we clear out the text so we will insert the text in
the object when the game is concluded.

Inserting a Picture into the Form

We will place two pictures on the form, one is the paddle and the other is the ball. The paddle is
50 pixels wide by 10 pixels tall and the ball is 10 by 10 pixels. We need to open a graphics
program and make both of these icons and save them in our Simple Game Program project
folder.

We select the toolbox and
Picturebox and we draw a box to
the right of the labels that will
contain the answers. We name the
picturebox imgPaddle. We scroll
down on the properties window
and select the three dots button at
the Image property and a Select
Resource window will appear.

 Figure 6A.12 – Adding an Image

 6A-9

We then will import the graphic of
our paddle which we made in
Microsoft Paint and saved as a
bitmap image. We then press the
OK button and the image will
appear in the picturebox.

Alphabetic
(Name) imgPaddle
Image Paddle.bmp
Location 260,320
Size 50,10

 Figure 6A.13 – Import the Paddle Image

We then will import the graphic of
our ball which we made in
Microsoft Paint and saved as a
JPEG image. We then press the
OK button and the image will
appear in the picturebox.

Alphabetic
(Name) imgBall
Image Ball.jpg
Location 1,1
Size 10,10

 Figure 6A.14 – Import the Ball Image

Adding Comments in Visual C# to Communicate to Others

The comments we placed in the first three lines of the program will inform the individual
opening and reading the code of the ownership. This is for those user that may run the
application without checking the label on the bottom of the form with the copyright
information. It is a great tool to alert the client to the rules of the program and tell them what the
application will do.

To begin the actual coding of the program, double click on the form. At the top of the program
and after the line of code with Namespace Simple Game {, place the following comments with
two slash (//) characters. Remember, the two slashes (//) will precede a comment and when the
code is compiled, comments are ignored.

 6A-10

Type the following line of code:

///Simple Game
///This program will allow the player to return a ball and continue to earn points
///If the ball passes the paddle the player loses a point up to three times

Figure 6A.15 – Adding an Introduction

Declaring Variables in a Program with the Int Statement

When we are going to use a number, text string or object that may change throughout the life of
the code, we create a variable to hold the value of that changing entity. In Visual C#, the integer
statement is one of the ways to declare a variable at the procedure level.

In this program, we will create data from mathematical computations. We will place the values
in integer variables called x, y, dx (change of x), dy (change of y), ptx, pty for the paddle
location, score for number of times we return the ball and lastly life for the number lives we
have left. These variables will hold whole numbers for movement on the form in terms of
pixels, so we will declare all eight as integers.

Type the following code under the public partial class frmBouncingBall : Form subroutine of
the program.

 6A-11

 public partial class frmSimpleGame : Form
 {
 int x; ///x is the position on the x axis from the upper left corner
 int y; ///y is the position on the y axis from the upper left corner
 int dx; ///speed is the change of x
 int dy; ///speed is the change of y
 int ptx; ///x coordinate of the paddle
 int pty; ///y coordinate of the paddle
 int score; ///how many time the ball hits the paddle
 int life; ///number of lives starting at 3

The integers x and y represent the actual position of the ball in the Simple Game Program. The
dx and dy are the change in the x position for movement of the timer. The ptx and pty are the
location of the paddle so we can calculate the where the 50 pixel long line is to determine
whether the ball hit that region. The score is originally set to zero and increases by one each
time the ball is hit, so we need a variable for it. The life integer starts at three and decreases by
one each time the ball passes the paddle. When the integer life reaches zero, we will end the
game.

Therefore, we can see the purpose of each variable we choose in the program.

Figure 6A.16 – Declaring Variables with Int Statements

The variable names should relate to what data they hold. We should not have spaces in the
name. Some programmers use the underscore character (_) to separate words in phrases. This is
acceptable, but a double underscore (__) can cause errors if we do not detect the repeated
character. We could call the variables x_coordinate and y_coordinate.

 6A-12

Setting Variables in a Program

Next, we will set the variables using the equal function. We will set the numbers in the two
textboxes to their variable and we compute resistance by division and the power by using
multiplication.

Type this code under the private void frmSimpleGame_Load(object sender, EventArgs e)
subroutine of the program.

 private void frmSimpleGame_Load(object sender, EventArgs e)
 {
 //Loads the ball on the screen at the upper left corner of the window
 x = 1; //x coordinate of the ball starting point
 y = 1; //y coordinate of the ball starting point
 dx = 1; //Speed of the ball in the x direction is 1
 dy = 1; //Speed of the ball in the y direction is 1
 score = 0; //The initial score is 0
 life = 3; //The initial life is 3
 }

The variable called speed is the change of vertical position in pixels, so we will start the
movement of the ball in one pixel increments. The x and y coordinates are the position of the
ball. The form is measured from 0,0 in the upper left corner to width and height of the form in
the lower right corner, which is 600 pixels by 400 pixels for our project.

We start the ball at x equals 1 and y equals 1. We keep the change of x (dx) and the change of y
(dy) the same throughout the entire program at 1. The score starts out at 0 and our life counter
starts at 3.

Figure 6A.17 – Setting the Variables in the C# Code

 6A-13

Adding a Timer to the Program

Figure 6A.18 – Adding a Timer

We will next add a Timer to the Simple Game application by selecting Timer from the Toolbox
and placing it on the form.

We Double click on the timer and
name the object timer1. We will set
Enabled and GenerateMember as
True and the Interval to 1
millisecond. We will set the
Modifiers to Private.

 Figure 6A.21 – Setting the Timer’s Properties

 6A-14

Programming for the Timer

We will double click on the timer at the bottom of the form and we add code to change the x
and y coordinates, the direction of the ball using dx and dy, We also will add points to the score
and deduct points from the number of lives left.

The first thing we do in the timer subroutine is set the ball location. Then we change the x
coordinate by the value of dx. If the ball is at either the left vertical boundary (x < 0) or the right
vertical boundary (x + 10 > this.clientsize.width), then we change the dx direction.
This.ClientSize.Width is the number of pixels of the Window’s width.

The next order of coding is to add dy to the y coordinate. If the ball is at the top horizontal
boundary (y < 0), then we change the dy direction. The next check is to examine three points of
logic. First we retrieve the location of the paddle. With an If statement, we will see if the ball’s
x coordinate is equal or greater than the paddle’s location and less or equal than the width of the
paddle. Finally, we check if the y + 10 of the ball is greater than the y coordinate of the paddle
and if all conditions are met, we change the direction of the ball, add one to the score and post
the new score on the game window. The next If statement will detect that the ball has gone by
the paddle. Then we have an If statement to check to see if the game is over.

Type the following code in the private void timer1_Tick(object sender, EventArgs e)
subroutine.

 private void timer1_Tick(object sender, EventArgs e)
 {
 imgBall.Location = new Point(x, y);
 x = x + dx;
 if (x < 0)
 {
 dx = -dx; /// if y is less than 0 then we change direction
 }
 else if (x + 10 > this.ClientSize.Width)
 {
 dx = -dx; /// if y + 10, the radius of the circle is greater than the form height then we change direction
 }

 y = y + dy;
 if (y < 0)
 {
 dy = -dy; /// if y is less than 0 then we change direction
 }

 /// checks if the ball hits the paddle
 Point point1 = this.imgPaddle.Location;
 ptx = (point1.X);
 pty = (point1.Y);
 if (x >= ptx)

 6A-15

 {
 if (x <= (ptx + 50))
 {
 if ((y + 10) > pty)
 {
 dy = -dy;
 score = score + 1;
 lblScore.Text = Convert.ToString(score);
 }
 }
 }

 /// checks if the ball goes by the paddle imaginary line
 if ((y + 9) > pty)
 {
 life = life - 1;
 lblLife.Text = Convert.ToString(life);
 dx = 1;
 dy = 1;
 x = 1;
 y = 1;
 }

 /// checks if the game is over
 if (life == 0)
 {
 lblGameOver.Text = "Game Over";
 x = -10;
 y = -10;
 }

 /// refresh the window
 this.Invalidate();
 }

Programming the Paddle

Brand new in this lesson is making left and right arrow keys move the paddle to the left and
right in the game. We need to add the following to the public frmSimpleGame() portion of the
code and right below InitializeComponent();.

KeyDown += new KeyEventHandler(frmSimpleGame_KeyDown);

Then we add the private void frmSimpleGame_KeyDown(object sender, KeyEventArgs e)

 6A-16

subroutine. The first two lines of code obtain the location of the paddle and assign it to px and
py. Next if the right arrow is pressed, the paddle moves 5 pixels to the right. Next if the left
arrow is pressed, the paddle moves 5 pixels to the left. The last if statement keeps the paddle in
the window boundary. So if the key is pressed when the paddle is on the boundary, the location
stays the same.

Type the following code:

public frmSimpleGame()
 {
 InitializeComponent();
 KeyDown += new KeyEventHandler(frmSimpleGame_KeyDown);
 }

private void frmSimpleGame_KeyDown(object sender, KeyEventArgs e)
 {
 int px = imgPaddle.Location.X;
 int py = imgPaddle.Location.Y;

 if (e.KeyCode == Keys.Right) px += 5;
 else if (e.KeyCode == Keys.Left) px -= 5;

 if (px < 0)
 {
 px = 0;
 }
 if (px > this.ClientSize.Width - 50)
 {
 px = this.ClientSize.Width - 50;
 }
 imgPaddle.Location = new Point(px, py);
 }

 6A-17

Figure 6A.19 – Setting the Paddle Movement Properties

Running the Program

After noting that the program is
saved, press the F5 to run the
Simple Game application. The
Simple Game window will appear
on the graphical display. The ball
will be moving down from the top
and we have the ability to use the
arrow keys to stop the ball from
getting by the paddle.

After playing the Simple Game
program, click on the red X in the
upper right corner to close the
application.

 Figure 6A.20 – Launching the Program

 6A-18

If our program does not function correctly, go back to the code and check the syntax against the
program shown in previous sections. Repeat any processes to check or Beta test the program.
When the program is working perfectly, save and close the project.

Here is the entire code to check your syntax.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Simple_Game_Program
{
 //Simple Game
 //This program will allow the player to return a ball and continue to earn points
 //If the ball passes the paddle the player loses a point up to three times
 public partial class frmSimpleGame : Form
 {
 int x; //x is the position on the x axis from the upper left corner
 int y; //y is the position on the y axis from the upper left corner
 int dx; //speed is the change of x
 int dy; //speed is the change of y
 int ptx; //x coord of the paddle
 int pty; //y coord of the paddle
 int score; //how many time the ball hits the paddle
 int life; //number of lives starting at 3

 public frmSimpleGame()
 {
 InitializeComponent();
 KeyDown += new KeyEventHandler(frmSimpleGame_KeyDown);
 }

 private void frmSimpleGame_KeyDown(object sender, KeyEventArgs e)
 {
 int px = imgPaddle.Location.X;
 int py = imgPaddle.Location.Y;

 if (e.KeyCode == Keys.Right) px += 5;
 else if (e.KeyCode == Keys.Left) px -= 5;

 if (px < 0)
 {

 6A-19

 px = 0;
 }
 if (px > this.ClientSize.Width - 50)
 {
 px = this.ClientSize.Width - 50;
 }
 imgPaddle.Location = new Point(px, py);
 }

 private void frmSimpleGame_Load(object sender, EventArgs e)
 {
 //Loads the ball on the screen at the upper left corner of the window
 x = 1;
 y = 1;
 dx = 1; //Speed of the ball in the x direction is 1
 dy = 1; //Speed of the ball in the y direction is 1
 score = 0; //The initial score is 0
 life = 3; //The initial life is 3
 }

 private void timer1_Tick(object sender, EventArgs e)
 {
 imgBall.Location = new Point(x, y);
 x = x + dx;
 if (x < 0)
 {
 dx = -dx; /// if y is less than 0 then we change direction
 }
 else if (x + 10 > this.ClientSize.Width)
 {
 dx = -dx; /// if y + 10, the radius of the circle is greater than the form height then we change direction
 }

 y = y + dy;
 if (y < 0)
 {
 dy = -dy; /// if y is less than 0 then we change direction
 }
 Point point1 = this.imgPaddle.Location;
 ptx = (point1.X);
 pty = (point1.Y);
 if (x >= ptx)
 {
 if (x <= (ptx + 50))
 {
 if ((y + 10) > pty)
 {

 6A-20

 dy = -dy;
 score = score + 1;
 lblScore.Text = Convert.ToString(score);
 }
 }
 }
 if ((y + 9) > pty)
 {
 life = life - 1;
 lblLife.Text = Convert.ToString(life);
 dx = 1;
 dy = 1;
 x = 1;
 y = 1;
 }
 if (life == 0)
 {
 lblGameOver.Text = "Game Over";
 x = -10;
 y = -10;
 }

 this.Invalidate();
 }
 }
}

There are many variations of this Visual C# Application we can practice and obtain information
from a personal computer. While we are practicing with forms, we can learn how to use
variables, strings and comments. These are skills that we want to commit to memory.

* World Class CAD Challenge 90-9 * - Write a Visual C# Application that displays a
single form and when executed, the program will show a Simple Game from the computer
using mathematical computations.

Continue this drill four times using some other form designs, each time completing the
Visual C# Project in less than 1 hour to maintain your World Class ranking.

